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Goal. Our main motivation in this report is to examine some properties of tensors, more
particularly their rank, decomposition and norm in a tensor space of the form Cn1 ⊗ · · · ⊗ CnN .
If on the one hand we see matrices of Cm×n as two-dimensional arrays of complex numbers, then
on the other hand we may view tensors as a generalization of matrices: in some sense, they are
multi-dimensional arrays of complex numbers.
One may wonder whether or not some nice properties satisfied by matrices are preserved in the
more general case of tensors, and we will see that it is not always the case, since for instance con-
trary to matrices, stricto sensu, there is no Singular Value Decomposition for tensors. Eventually,
we will take an interest in some applications to Quantum Information Theory, showing in partic-
ular the surprising result that the so-called geometric measure of entanglement is non-additive.
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Introduction
Tensors are one of the most famous generalizations of matrices. They are basic and convenient tools that have
been widely used in many fields at the nexus of Mathematics, Physics or Computer Science, and they are
applied in numerous ways. Physicists use them as a concise mathematical framework to establish equations
and to solve problems in various areas such as mechanics [Ari90], electrodynamics [NYLBSB97] or general
relativity [Gre72] among others.

Tensor theory was introduced in 1900 by the mathematician Tullio Levi-Civita in conjonction with his doctoral
supervisor Gregorio Ricci-Curbastro in Méthodes de calcul différentiel absolu et leurs applications [RLC70] as
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part of the Absolute Differential Calculus. It was then developed and popularized by Jan Arnoldus Schouten
in 1924 [Sch24] at the time when general relativity was booming.

However, as a fly on the ointment, in a same way as generality grows on the one hand, complexity arrives on
the other hand with all its ensuing problems. Hillar and Lim summarized all of it in the following sentence:

Tensor problems are almost invariably computationally hard. [HL13]

What is behind the scenes is that simple problems for matrices, such as computing their rank or exhibiting a
certain decomposition, turn out to be NP-hard when we take a look at the more general case of tensors. The
purpose of the first two sections of this report will be to understand better how difficult it is to generalize
tools as simple as rank, norm and decomposition, from matrices to tensors, and we will in particular introduce
two tensor norms, the spectral norm || · ||σ and the nuclear norm || · ||∗, and explore a tensor decomposition
approximation to the Singular Value Decomposition known as Canonical Polyadic Decomposition.

Finally, in a third and last section, we will try to apply those concepts to Quantum Information Theory.
Finding firm roots in Classical Information Theory which was introduced by Claude E. Shannon in 1948
[Sha48], Quantum Information Theory is now a blooming subject, as shown by publication dates distributed
in the last two decades for most of them. In particular, we will study the notion of entanglement and a
tool to measure it: the geometric measure of entanglement. As a last result, we will provide a proof of the
astonishing result that this measure is not additive.

I. Linear Algebra: Matrices
In this section, we will recall some basic facts related to matrices. In particular, our motivation is to express
the notions of rank, decomposition, and norm, so that we may try to generalize them to tensors in the next
section. The main reference for this section is the course [Wat11]. See also [Bha97] and [HJ91] for more
details about linear algebra.

I.1. Basic Notations
Let us introduce some fundamental notations that will be used throughout this report. We denote by
Cm×n the vector space of matrices with m rows and n columns, and with coefficients in C. Given a matrix
A := (ai,j)i,j ∈ Cm×n, we define its entry-wise conjugate Ā, its transpose Aᵀ and its adjoint A∗ as follows:

Ā := (āi,j)i,j ∈ Cm×n, Aᵀ := (aj,i)i,j ∈ Cn×m and A∗ := Aᵀ ∈ Cn×m.

Spectrum and Trace. If there is a non-zero vector x ∈ Cn such that Ax = λx for some λ ∈ C, then we call x
an eigenvector and λ an eigenvalue of A. The spectrum of A, denoted spec(A), is then the tuple (λ1, . . . , λn) of
all the eigenvalues of A, where the λi’s are not necessarily distinct. In the particular case of a square matrix
A ∈ Cn×n, the trace Tr(A) is defined as the sum of the diagonal elements, or equivalently as the sum of all
the eigenvalues:

Tr(A) :=
n∑
i=1

aii =
n∑
i=1

λi ∈ C.

Of course, the trace is C-linear:

Tr(A + µB) =
n∑
i=1

(
aii + µ bii

)
=

n∑
i=1

aii + µ

n∑
i=1

bii = Tr(A) + µTr(B). (1)

Normal and Semi-Definite Matrices. We want to introduce two important classes of matrices: normal
matrices and positive semi-definite matrices. On the one hand, a normal matrix is a matrix A ∈ Cm×n such
that AA∗ = A∗A, or in other words such that A and A∗ commute:

[A, A∗] = 0.

On the other hand, the set Pos(Cm×m) is the set of positive semi-definite matrices, i.e. square matrices
P ∈ Cm×m that can be written as P = B∗B for some B ∈ Cm×m. Such matrices are obviously normal,
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hermitian, and they only have non-negative eigenvalues. This explains why we often denotes those matrices
by simply P ≥ 0, while more generally A ≥ B means that A− B is positive semi-definite.

Inner Product. We define on Cm×n the following inner product:

〈A, B〉 := Tr(A∗B) ∈ C.

Note that in the particular case of vectors x := (xi)i and y := (yi)i in Cm ' Cm×1, we have the usual inner
product of Cm:

〈x, y〉 := Tr
(

x∗y︸︷︷︸
∈C

)
= x∗y =

[
x1 . . . xm

] [ y1

...
ym

]
=

m∑
i=1

xi yi.

Still in the case of vectors, physicists will prefer rather using the quite convenient notation 〈x|y〉 := 〈x| |y〉 =
〈x, y〉 for the inner product, where 〈x| := x∗ is called bra of x and |y〉 := y is called ket of y. This notation is
called Dirac notation. Naturally, we have the induced norm on Cm defined by ||x|| :=

√
〈x, x〉. We say that

a family {x1, . . . , xk} of vectors in Cm is orthonormal if:

〈xi, xj〉 = δij ,

for any 1 ≤ i, j ≤ k. Note that in particular ||xi|| =
√
〈xi, xi〉 =

√
δii = 1.

I.2. Matrix Rank
There are many equivalent ways to define the rank of a matrix. One of the most common ways is the following
one: the rank of a matrix A ∈ Cm×n, denoted rank(A), is defined as the dimension of the range subspace
Ran(A) :=

{
Ax : x ∈ Cn

}
⊆ Cm spanned by the columns of A. Recall that we have the rank-nullity theorem:

dim
(

ker(A)
)

+ rank(A) = dim
(
Cn
)

= n.

We find in [BFŻ19, Lemma 1] some equivalent definitions of rank(A):

• It is the minimum k ∈ N such that A =
∑k
i=1 xiy∗i for some xi ∈ Cm and yi ∈ Cn.

• It is the dimension of the subspace spanned by rows of A.
• It is the dimension of a maximal non-zero minor of A.

Matrices of rank 1 are naturally called rank-one matrices and they are of the form A = xy∗, with non-zero
vectors x ∈ Cm and y ∈ Cn. More generally, we call rank-k matrix a matrix A such that rank(A) = k, and we
say that a matrix A ∈ Cm×n if of maximal rank if rank(A) = min{m,n}.

Complexity. An easy way to compute the rank of a given matrix in Cm×n consists in using Gaussian
elimination: once the matrix has a row echelon form, it suffices to count its non-zero rows. So, using this
method, the complexity of computing the rank of a matrix is O

(
min(m,n)2 max(m,n)

)
in exact arithmetic.

We will see in the next section that it does not remain the same in the case of tensor rank.

Limit of a Matrix Sequence. We want to show that, given a positive integer k, the limit of a convergent
sequence of matrices of rank at most k is at most of rank k. In other words, we want to prove that the set
of matrices of rank ≤ k is closed. This result is interesting since we will see in the next section that it is no
longer true for tensors. We still work in Cm×n and we assume without loss of generality that m ≤ n. So we
take k ≤ m, and we even do not have to consider the case k = m since the result would be trivial. We use
the trick that matrices of rank at most k are matrices whose minors of order k + 1 are all null. We have:{

A ∈ Cm×n : rank(A) ≤ k
}

=
{

A ∈ Cm×n : ∀I ⊆ [m],∀J ⊆ [n], |I| = |J | = k + 1, detXI,J = 0
}

=
⋂
I,J

{
A ∈ Cm×n : detXI,J = 0

}
.

The sets in the intersection are closed as being the sets of vanishing points of some polynomial equations,
and therefore the set of matrices of rank at most k is closed by finite intersection of closed sets.
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I.3. Matrix Decompositions
Matrix decompositions are widely used in various fields of Mathematics, Physics and theoretical Computer
Science in order to simplify some computations. In this part, we want to provide two of the most important
decompositions of a given matrix: its spectral decomposition and its singular-value decomposition (SVD).

The Spectral Decomposition. On the one hand, the spectral decomposition, also known as eigendecom-
position, holds for normal matrices. Basically, it consists in decomposing a normal matrix A into a linear
combinaison of self-adjoint rank-one matrices xix∗i . The coefficients λi arise from the spectrum of A, which
explains in some sense the name of this decomposition.

Proposition 1 (Spectral Decomposition). Let A ∈ Cm×m be a normal matrix with spectrum spec(A) :=
{λ1(A), . . . , λm(A)}. Then there exists an orthonormal basis {x1, . . . , xm} of Cm such that:

A =
m∑
i=1

λi(A) xix∗i =
m∑
i=1

λi(A) |xi〉〈xi|.

With this notation, one may recall that if we consider normal matrices A, B ∈ Cm×m that commute, then
they are diagonalizable in the same basis, i.e. there is an orthonormal basis {x1, . . . , xm} of Cm such that:

A =
m∑
i=1

λi(A) xix∗i and B =
m∑
i=1

λi(B) xix∗i .

Moreover, this decomposition is quite useful for instance to solve a system of linear ordinary differential
equations or linear difference equations. Consider for example the difference equation yt+1 = A yt where
y0 ∈ Cm is given. Its solution is:

yt = Aty0 =
m∑
i=1

λi(A)t xix∗i y0 =
m∑
i=1

λi(A)t |xi〉〈xi|y0〉.

Functional Calculus. An interesting remark is that this decomposition enables us to extend a function
f : C → C to a function between normal matrices of Cm×m. Indeed, for any normal matrix A ∈ Cm×m, it
suffices to define:

f(A) :=
m∑
i=1

f
(
λi(A)

)
xix∗i .

Naturally, the same idea works in the case of a function f only defined on spec(A). In particular, we
may apply this technique to the square-root function, and we obtain for any positive semi-definite matrix
A ∈ Pos(Cm×m):

√
A :=

m∑
i=1

√
λi(A) xix∗i .

(This is well-defined since, as we already saw, eigenvalues of a positive semi-definite matrix are non-negative.)
This operation will turn out to be especially helpful in the next subsection as it will be involved in the
definition of the nuclear norm || · ||1. In addition, notice that

√
A ∈ Cm×m is the only positive semi-definite

matrix such that
√

A×
√

A = A:

√
A×
√

A =
(

m∑
i=1

√
λi(A) xix∗i

)(
m∑
j=1

√
λj(A) xjx∗j

)
=

m∑
i,j=1

√
λi(A)λj(A) xi x∗i xj︸︷︷︸

=δij

x∗j =
m∑
i=1

λi(A) xix∗i = A.

The Singular-Value Decomposition. On the other hand, the SVD is a bit more general than the above
decomposition in the sense that it may be applied to an arbitrary matrix. Note that this decomposition is
also called Schmidt decomposition by physicists. In some sense, this is the canonical way to make a minimal
rank decomposition of a matrix.
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Proposition 2 (SVD). For a given matrix A ∈ Cm×n of rank r := rank(A), there exist real numbers
σ1(A) ≥ · · · ≥ σr(A) > 0 such that:

A =
r∑
i=1

σi(A) xiy∗i ,

where {xi}i and {yi}i are orthonormal families of Cm and Cn respectively (i.e. x∗i xj = y∗i yj = δij).
Moreover, the σi(A)’s are uniquely determined (up to permutation) and are called singular values of A.

Note that there is a link between the former two decompositions. Indeed, for any 1 ≤ i ≤ rank(A), the
following equalities show that we have σi(A) =

√
λi(A∗A) =

√
λi(AA∗), or in other words that the σi(A)2’s are

the positive eigenvalues of A∗A:

A∗A yi =
(

r∑
k=1

σk(A) ykx∗k

)(
r∑
j=1

σj(A) xjy∗j

)
yi =

r∑
k,j=1

σk(A)σj(A) yk x∗kxj︸︷︷︸
=δkj

y∗jyi︸︷︷︸
=δji

= σi(A)2 yi. (2)

I.4. Matrix Norms
There exist several matrix norms, but in this report we will mainly focus only on two of them, the trace
norm || · ||1 and the operator norm || · ||∞. Those two different norms are actually particular cases of a more
general norm know as Schatten p-norm || · ||p, so let us introduce it first.

Schatten p-norm. For any 1 ≤ p < +∞ and A ∈ Cm×n, define:

||A||p :=
[

Tr
(

(A∗A)p/2
)]1/p

and ||A||∞ := max
{
||Ax|| : x ∈ Cn, ||x|| = 1

}
,

where || · ||∞ coincides with the limit of || · ||p when p → +∞. Recall that the meaning of
√

AA∗ has been
explained with the spectral decomposition in the previous subsection. It happens that some very interesting
properties hold for this norm (see [Wat11, Subsection 2.3] for more details), such as:

||AB||p ≤ ||A||p ||B||p and ||A||p = ||Aᵀ||p = ||A∗||p = ||Ā||p. (3)

Trace and Operator Norms. In particular, the trace and operator norms || · ||1 and || · ||∞ are respectively
the Schatten 1- and∞-norm, and therefore they satisfy the hereinabove properties. Notice that the operator
norm || · ||∞ is in fact the usual operator norm induced by the Euclidean norm || · || on Cn:

||A||∞ := max
{
||Ax|| : x ∈ Cn, ||x|| = 1

}
= sup

x6=0

||Ax||
||x||

.

Concerning the trace norm || · ||1, it is often referred to with such a name simply because it is of the form:

||A||1 := Tr
(√

A∗A
)
.

Moreover, a duality occurs between those two norms for any A ∈ Cm×n:

||A||1 = max
{
|〈B, A〉| : B ∈ Cm×n, ||B||∞ ≤ 1

}
and ||A||∞ = max

{
|〈B, A〉| : B ∈ Cm×n, ||B||1 ≤ 1

}
. (4)

Link with SVD. Recall from Proposition 2 that we may decompose any A ∈ Cm×n in SVD as follows:

A =
r∑
i=1

σi(A) xiy∗i ,

where r := rank(A), σ1(A) ≥ · · · ≥ σr(A) > 0 are real numbers called singular values of A, and {xi}i and {yi}i
are orthogonal families of Cm and Cn respectively. Then, we have the following link between the two norms
and the singular values.
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Proposition 3. For any matrix A ∈ Cm×n of rank r, the following holds:

||A||1 =
r∑
i=1

σi(A) and ||A||∞ = max
1≤i≤r

σi(A) = σ1(A).

Proof. On the one hand, if n ≤ m, then we obtain the first equality:

||A||1 = Tr
(√

A∗A
)

=
n∑
i=1

λi
(√

A∗A
) by (2)=

n∑
i=1

σi(A) =
r∑
i=1

σi(A),

where the last equality holds because σr+1(A) = · · · = σm∧n(A) = 0. Otherwise, if m ≤ n, then it suffices to
use the property seen in (3) to obtain ||A||1 = ||A∗||1 =

∑m
i=1 λi

(√
AA∗
)
, and we conclude similarly as above

using again the equality (2).
On the other hand, as {xi}i ⊆ Cm and {yi}i ⊆ Cn are respectively orthogonal families, we may extend them
to orthogonal bases {x̃i}i ⊆ Cm and {ỹi}i ⊆ Cn respectively. Now, for any u := u1ỹ1 + · · ·+ unỹn ∈ Cn such
that ||u|| = 1, we use the orthogonality property of {ỹi}i to get:

Au =
r∑
i=1

σi(A) xiy∗i
(
u1ỹ1 + · · ·+ unỹn

)
=

r∑
i=1

σi(A)ui xi =
m∑
i=1

σi(A)ui x̃i,

where we use the convenient notation σr+1(A) = · · · = σm(A) = 0. Then, taking the norm, we obtain:

||Au||2 =
m∑
i=1

σi(A)2︸ ︷︷ ︸
≤σ1(A)2

u2
i ≤ σ1(A)2∑m

i=1 u
2
i︸ ︷︷ ︸

=||u||2=1

≤ σ1(A)2.

So ||A||∞ := max ||Au|| ≤ σ1(A), and we even have equality since σ1(A) is reached by ||Au|| for u := (1, 0, . . . , 0)
in the basis {ỹi}i ⊆ Cn.

II. Multilinear Algebra: Tensors
Now, let us try to generalize to tensors what we have just seen for matrices in the former section. The
notion of tensor is quite useful in Quantum Physics especially when we desire to describe a few independent
subsystems at the same time with a compact notation. In some sense, tensors could be seen as multi-way
arrays of data, and they have particular properties.

II.1. Link Between Tensors and Matrices
We consider a tensor space of the form H := Cn1 ⊗ · · · ⊗ CnN for some positive integers n1, . . . , nN , and we
call its elements N -partite states as it is the convention in Quantum Mechanics. These so-called states are
either of the simple form |ΨN 〉 := |x1〉⊗· · ·⊗|xN 〉 for some |xi〉 ∈ Cni , and in that case they are called product
states, or they are made out of a linear combinaison of product states and called entangled states. Recall from
Subsection I.1. that |xi〉 is the Dirac notation used by physicists to describe a vector, and 〈xi| denotes its
dual. Physicists will say that entangled states are a superposition of product states (as in the Schröderger’s
cat experiment, where the cat is surprisingly considered both dead and alive, it is a superposition of the state
"dead" and the state "alive"), and they correspond to correlated events. If we see a tensor |ΨN 〉 ∈ H as an
N -way array of complex numbers, we may have access to each of these numbers using a coordinate notation
similar to one of matrices: (ψN )i1...iN ∈ C, where 1 ≤ i1 ≤ n1, . . . , 1 ≤ iN ≤ nN . In other words, as for
matrices, we will sometimes use the coefficient notation as follows:

|ΨN 〉 =
(
(ψN )i1...iN

)
.

The link with matrices is the following: when N = 2, we are in the bipartite case and our space H = Cn1⊗Cn2

consists precisely of all matrices. Indeed, recall that we have the isomorphism Cn1×n2 ' Cn1 ⊗ (Cn2)∗. But,
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as Cn2 is finite dimensional, we have (Cn2)∗ ' Cn2 using 〈x̃i| 7→ |x̃i〉, where the |x̃i〉’s form a basis of Cn2 .
Therefore, we obtain that the space of n1 × n2 matrices is well isomorphic to H when N = 2:

Cn1×n2 ' Cn1 ⊗ (Cn2)∗ ' Cn1 ⊗ Cn2 = H.

Hence, our goal in this section is to generalize the results known for N = 2 to the mutlipartite case N ≥ 3.
The number N will be designated as the order of the tensors of H. Thus, scalars are called zeroth-order
tensors, vectors are called first-order tensors, matrices are called second-order tensors, and eventually all
other tensors are called higher-order tensors (i.e. when we are in the multipartite case N ≥ 3).

II.2. Tensor Rank
The notion of rank is quite helpful since it could be seen as a simple way to measure entanglement of a
state — recall that we defined entangled states in the former subsection as non-trivial linear combinaisons of
product states. After defining the notion of tensor rank, we will try to compare some of its aspects with the
notion of matrix rank defined in the previous section. The main reference for this subsection will be [BFŻ19,
Sections 3 and 4].

Definition. Given an N -partite state ΨN ∈ H, the rank rank(ΨN ) of ΨN may be defined as the minimal
integer r such that ΨN could be represent as a superposition of r product states:

ΨN =
r∑
i=1
|x(i)

1 〉 ⊗ · · · ⊗ |x
(i)
N 〉,

for some |x(i)
j 〉 ∈ Cnj , i = 1, . . . , r. This definition of tensor rank is a generalization of one of the equivalent

definitions of matrix rank seen in the previous section. Naturally, if rank(ΨN ) = 1, then it means that ΨN

is a product state and we call it rank-one tensor; this notion will be useful in the next subsection in order to
define the canonical polyadic decomposition of a tensor. One can find various different approches to tensor
rank in [BFŻ19, Section 3].

Some Properties. First, in general, one can easily see that the rank of a product of some tensors is
sub-multiplicative:

rank(ΨN ⊗ ΦN ) ≤ rank(ΨN ) rank(ΦN ),

where ΨN ,ΦN ∈ H. Indeed, if we write ΨN =
∑r
i=1 |x

(i)
1 〉 ⊗ · · · ⊗ |x

(i)
N 〉 and ΦN =

∑s
j=1 |y

(j)
1 〉 ⊗ · · · ⊗ |y

(j)
N 〉,

then:
ΨN ⊗ ΦN =

∑
i,j

|x(i)
1 〉 ⊗ · · · ⊗ |x

(i)
N 〉 ⊗ |y

(j)
1 〉 ⊗ · · · ⊗ |y

(j)
N 〉,

where the latter sum consists of r · s summands, and we get the wanted inequality by minimality of the rank.
Moreover, note that the rank rank(ΨN ) of any tensor is a quantity that can be majored by the product
n1 . . . nN since this last is the dimension of H, but we can find a more precise and interesting majoration in
[BFŻ19, Theorem 14]:

rank(ΨN ) ≤ n1 . . . nN
max{n1, . . . , nN}

.

Additionally, we may define the direct sum ΨN ⊕ ΦN ∈ H2 of ΨN ,ΦN ∈ H as follows:

(ψN ⊕ φN )i1,...,iN := (ψN )i1,...,iN and (ψN ⊕ φN )n1+i1,...,nN +iN := (φN )i1,...,iN ,

for 1 ≤ ik ≤ nk, and we set all other entries to 0. In some sense, the "first" coefficients of ΨN ⊕ΦN are those
of ΨN , and the "last" coefficients are those of ΦN . We obviously have the following inequality:

rank(ΨN ⊕ ΦN ) ≤ rank(ΨN ) + rank(ΦN ),

and we have equality in the case of matrices. Strassen wondered in 1973 whether equality holds or not for
more general tensors in the so-called Strassen’s direct sum conjecture (see [Str73]). Actually, the answer is
that equality is satisfied in some particular cases, but Shitov showed in 2017 that it is not true in general
(see [Shi17]) contrary to the case of matrices.
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NP-Hard to Compute. We have seen in the former section that, in the case of matrices where N = 2, the
complexity of computing the rank of a matrix is O

(
min(m,n)2 max(m,n)

)
in exact arithmetic. Nevertheless,

in the multipartite case where N ≥ 3, the calculation of the rank of a tensor is much harder. It is actually
even NP-hard in most cases (see [Hå90, HL13] for more details). In particular, find in [HL13, Table I] a
list of NP-hard problems related to tensors. This last reference also provides an idea why it is NP-hard:
"3-tensor problems form a boundary separating classes of tractable linear/convex problems from intractable
non-linear/non-convex ones". Thereby, contrary to matrices, there is no general and trivial algorithm that
computes tensor rank.

A Limit Case. Now, let us show a fascinating result: the set of rank-2 tensors is not closed, in the sense that
we can exhibit tensor |Φ〉 of rank 3 which can be written as the limit of some tensors of rank 2. Consider the
tripartite case N = 3, and fix all the dimensions n1, n2 and n3 of the parties to 2. In other words, we are in
the case H = C2 ⊗ C2 ⊗ C2 = (C2)⊗3. Define the following state of H:

|Φ〉 := |121〉+ |211〉+ |112〉,

where |xyz〉 is a convenient shortcut for |x〉⊗|y〉⊗|z〉 ∈ H for some |x〉, |y〉 and |z〉 in C2, and where |1〉 := |x̃1〉
and |2〉 := |x̃2〉 form an orthonormal basis of C2. Consider any tensor |Ψ3〉 in H. We want to introduce the
notion of slice. In the same way as we can view a matrix either as an array of numbers or as a list of vectors,
we may view a tensor either as a multi-way array or as a list of slices. In our case, the tensor |Ψ3〉 of H could
be seen not only as a 2×2×2 "cube" of data, but also as a list of two slices. Indeed, fixing the last coordinate
of |Ψ3〉 to |1〉, we get the "top" slice A1, and fixing its last coordinate to |2〉, we obtain the "bottom" slice A2.
Note that those two slices are actually 2× 2 matrices, and they are called frontal slices. Now, we can write
|Ψ3〉 as a sum of those two slices:

|Ψ3〉 = A1 ⊗ |1〉+ A2 ⊗ |2〉

This definition of slice is used in the following proposition, which will tell us that |Φ〉 is of rank 3.

Proposition 4. [BFŻ19, Lemma 6]. Let |Ψ3〉 ∈ H a tensor where H = C2⊗C2⊗C2, and denote A1 and A2
its two frontal slices. Then rank(|Ψ3〉) = 3 if, and only if, the matrices A1 and A2 are linearly independent
and span(A1, A2) contains two matrices A and B such that A is invertible and A−1B is not diagonalizable.

In our case, we notice that:

|Φ〉 =
(
|12〉+ |21〉

)
⊗ |1〉+ |11〉 ⊗ |2〉 = A1 ⊗ |1〉+ A2 ⊗ |2〉, where: A1 :=

[
0 1
1 0

]
, A2 :=

[
1 0
0 0

]
.

Now, we see that A1 and A2 are well linearly independent, that A1 is invertible with itself as inverse, and that
A−1

1 A2 = A1A2 =
[
0 0
1 0

]
is not diagonalizable. Therefore, by Proposition 4, we deduce that:

rank
(
|Φ〉
)

= 3.

However, the state |Φ〉 can be written as a limit of tensors of rank 2:

|Φ〉 = lim
t→0

1
t

((
|1〉+ t|2〉

)⊗3 − |111〉
)
,

because: (
|1〉+ t|2〉

)⊗3 =
(
|1〉+ t|2〉

)
⊗
(
|1〉+ t|2〉

)
⊗
(
|1〉+ t|2〉

)
= |111〉+ t

(
|211〉+ |121〉+ |112〉︸ ︷︷ ︸

=|Φ〉

)
+ t2

(
|122〉+ |212〉+ |221〉

)
+ t3|222〉.

Hence, we showed that the set of rank-2 tensors is not "closed" contrary to the case of matrices (see the
former section).
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II.3. Tensor Norms
We would like to introduce two tensor norms known as spectral norm ||·||σ and nuclear norm ||·||∗. Note that,
in the literature, these are also known in Banach theory as respectively injective and projective tensor norms.
They have many applications to quantum information theory, e.g. the geometric measure of entanglement
that we will study in the next section, and they also induce the notion of nuclear rank that, unlike the
tensor rank, is lower semi-continuous. After defining these two tensor norms, we will see a link with the two
matrice norms || · ||1 and || · ||∞ that we defined in the previous section. Finally, even though it is NP-hard to
compute these norms, we will briefly mention some alternating approaches in order to compute them. Our
main references for this subsection will be [FL16, DFLW17, Nie17].

Spectral and Nuclear Norms. A norm || · || on H := Cn1 ⊗ · · · ⊗ CnN is a tensor norm if for any product
state x = x1 ⊗ · · · ⊗ xN ∈ H we have ||x|| = ||x1||Cn1 . . . ||xN ||CnN . For instance, given a tensor ΨN ∈ H, we
respectively define the spectral norm || · ||σ and the nuclear norm || · ||∗ as follows:

||ΨN ||σ := max
{∣∣〈ΨN , x1 ⊗ · · · ⊗ xN

〉∣∣ : ||xj || = 1, xj ∈ Cnj

}
,

||ΨN ||∗ := min
{∑r

i=1 |λi| : ΨN =
∑r
i=1 λi x(i)

1 ⊗ · · · ⊗ x(i)
N , ||x(i)

j || = 1, x(i)
j ∈ Cnj , λi ∈ C, r ∈ N

}
,

where 〈·, ·〉 is the usual scalar product of tensors, defined as follows given two tensors ΨN ,ΦN ∈ H of same
order:

〈ΨN ,ΦN 〉 :=
n1∑
i1=1

n2∑
i2=1
· · ·

nN∑
iN =1

(ψN )i1...iN (φN )i1...iN ∈ C. (5)

Proposition 5. In the bipartite case N = 2, we have the following equalities for any matrix A ∈ Cm×n of
maximal rank:

||A||σ = max
1≤i≤rank(A)

(
σi(A)

)
= σ1(A). (6)

||A||∗ =
rank(A)∑
i=1

σi(A), (7)

where the σi(A)’s are the singular values of A and rank(A) = min{n,m} is the rank of A.

Proof. Recall from Proposition 2 that the matrix A ∈ Cm×n may be written under the following SVD form:

A =
rank(A)∑
i=1

σi(A) uiv∗i , where: 〈ui, uj〉 = 〈vi, vj〉 = δij for any 1 ≤ i, j ≤ r.

(6) First, notice that, in our bipartite case N = 2, the spectral norm || · ||σ is reduced to:

||A||σ := max
{
|〈A, xy∗〉| : ||x|| = ||y|| = 1, x ∈ Cm, y ∈ Cn

}
= max
||x||=||y||=1

∣∣〈Ay, x〉
∣∣.

If we take x := u1 ∈ Cm and y := v1 ∈ Cn from the SVD of A, then we well have ||x|| = ||y|| = 1 and:∣∣〈Ay, x〉
∣∣ =

∣∣x∗Ay
∣∣ =

∣∣∣u∗1(∑rank(A)
i=1 σi(A) ui v∗i

)
v1

∣∣∣ =
∣∣∣∑rank(A)

i=1 σi(A) 〈u1, ui〉︸ ︷︷ ︸
=δ1i

〈vi, v1〉︸ ︷︷ ︸
=δ1i

∣∣∣ = |σ1(A)| = σ1(A).

By maximality of || · ||σ, we deduce that σ1(A) ≤ ||A||σ.
Conversely, consider any x ∈ Cm and y ∈ Cn satisfying ||x|| = ||y|| = 1, and let us show that

∣∣〈x, Ay〉
∣∣ ≤ σ1(A).

We have:

|〈x, Ay〉|2 =
∣∣∣〈x,

(∑rank(A)
i=1 σi(A) ui v∗i

)
y
〉∣∣∣2 ≤ ∣∣∣∑rank(A)

i=1 σi(A)︸ ︷︷ ︸
≤σ1(A)

〈x, ui〉 〈vi, y〉
∣∣∣2

≤ σ1(A)2∑rank(A)
i=1 |〈x, ui〉|2 |〈vi, y〉|2 ≤ σ1(A)2

(∑rank(A)
i=1 |〈x, ui〉|2

)
︸ ︷︷ ︸

(∗)
≤ ||x||2=1

(∑rank(A)
j=1 |〈vj , y〉|2

)
︸ ︷︷ ︸

(∗)
≤ ||y||2=1

≤ σ1(A)2,

9
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where the inequalities (∗) hold because, if we denote (x1, . . . , xm) the coordinates of x in a basis of Cm made
out of u1, . . . , ur and some other vectors, then we have

∑r
i=1 |〈x, ui〉|2 =

∑rank(A)
i=1 |xi|2 ≤

∑m
i=1 |xi|2 = ||x||2.

Hence, passing to the maximum, we get ||A||σ ≤ σ1(A) and we obtain equation (6).

(7) Next, still in the bipartite case N = 2, the nuclear norm || · ||∗ is reduced to:

||A||∗ := min
{∑r

i=1 |λi| : A =
∑r
i=1 λi xiy∗i , ||xi|| = ||yi|| = 1, xi ∈ Cm, yi ∈ Cn, λi ∈ C, r ∈ N

}
.

With the notations of the above SVD, we set:

xi := ui ∈ Cm, yi := vi ∈ Cn, λi := σi(A) ∈ C, r := rank(A) ∈ N,

and we well have ||xi|| = ||yi|| = 1 and A =
∑r
i=1 λi xiy∗i . So, by minimality of || · ||∗, we get:

||A||∗ ≤
∑rank(A)
i=1 |λi(A)| =

∑rank(A)
i=1 σi(A).

Reciprocally, write any decomposition A =
∑r
i=1 λi xiy∗i as in the above definition of || · ||∗, and show that∑rank(A)

i=1 σi(A) ≤
∑r
i=1 |λi|. Without loss of generality, we may assume that m ≤ n, which means that

rank(A) = m. As stated in [HJ91, Theorem 3.4.1], we have:

rank(A)∑
i=1

σi(A) = max
{
|Tr(AC)| : C ∈ Cn×m is a partial isometry of rank rank(A)

}
.

Recall that a matrix C ∈ Cn×m is said to be a partial isometry if ||Cx|| ≤ ||x|| for all x ∈ Cm. Hence, we may
restate our goal as follows:

rank(A)∑
i=1

σi(A) = max
C
|Tr(AC)|

(goal)
≤

r∑
i=1
|λi|.

For any partial isometry C ∈ Cm×n, notice that Tr(xiy∗i C) = Tr(y∗i Cxi) = Tr(〈yi, Cxi〉) = 〈yi, Cxi〉 because it
is a scalar, so we have:

|Tr(AC)| =
∣∣∣Tr
(∑r

i=1 λi xiy∗i C
)∣∣∣ (1)=

∣∣∣∣∣
r∑
i=1

λi Tr(xiy∗i C)
∣∣∣∣∣

≤
r∑
i=1

∣∣λi∣∣ ∣∣〈yi, Cxi〉
∣∣ C.-S.
≤

r∑
i=1
|λi| ||yi||︸︷︷︸

=1

||Cxi||︸ ︷︷ ︸
≤||xi||=1

≤
r∑
i=1
|λi|.

Thus, taking the maximum of |Tr(AC)| over C and the minimum of
∑r
i=1 |λi|, we obtain the other inequality∑rank(A)

i=1 σi(A) ≤ ||A||∗, and equation (7) holds.

Link with Matrix Norms. Now, recall that we saw in the previous section the definition of the trace norm
|| · ||1 and the operator norm || · ||∞, introduced as follows for any matrix A ∈ Cm×n:

||A||1 := Tr
(√

A∗A
)

and ||A||∞ := max
{
||Ax|| : x ∈ Cn, ||x|| = 1

}
.

Using Proposition 3 and Proposition 5, we get the following corollary which states that these two matrix norms
are particular cases of tensor norms.

Corollary 6. When N = 2, the spectral and nuclear norms coincide respectively with the operator and
trace norms for any matrix A ∈ Cm×n of maximal rank:

||A||σ = ||A||∞ and ||A||∗ = ||A||1.

Moreover, it is known that we also have a duality between || · ||σ and || · ||∗, as for || · ||1 and || · ||∞ in (4),
meaning that for any tensor Ψ ∈ H:

||Ψ||σ = max
{∣∣〈Ψ,Φ〉∣∣ : Φ ∈ H, ||Φ||∗ = 1

}
and ||Ψ||∗ = max

{∣∣〈Ψ,Φ〉∣∣ : Φ ∈ H, ||Φ||σ = 1
}
.
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NP-Hard to Compute. As explained in [FL16], even if we consider a case as simple as N = 4, the
computation of the spectral norm || · ||σ and the nuclear norm || · ||∗ is NP-hard. Actually, it is even the
case when we restrict tensors to be bi-Hermitian, bi-symmetric, positive semi-definite, non-negative valued,
or all the above. However, we find in [DFLW17, Sections 9 and 10] an alternating method for computing the
nuclear norm of non-symmetric tensors in a first time, and then of symmetric tensors, where a tensor is said
symmetric if it remains unchanged after permuting two of its indices. In addition, one may take a look at
[Nie17] for a reverse approach, focusing first on symmetric tensors and based on the fact that the nuclear
norm of symmetric tensors can be achieved with a symmetric decomposition, and then extending results to
non-symmetric tensors in its last section.

II.4. Tensor Decomposition
We know from Proposition 1 and Proposition 2 that there are two very useful decompositions for matrices, the
so-called spectral decomposition and singular value decomposition (SVD), and we may wonder if there exists
any generalization of them to tensors. While the first one would not make sense for tensors since it requires
normal matrices and we do not have a canonical notion of tensor transposition so a fortiori neither a notion
of normal tensor, the latter would worth the try for tensors. However, as we will see, strictly speaking, such
an SVD for tensors cannot be defined. Nevertheless, we will then provide a tensor decomposition that try to
keep some aspects of the SVD, namely the canonical polyadic decomposition (CPD). Our main references for
this subsection are [KB09] and [RSG17].

No SVD for Tensors. As a generalization of the SVD to general tensors, the higher-order singular value
decomposition (HOSVD) would decompose a tensor ΨN ∈ H as follows:

ΨN =
rank(ΨN )∑

i=1
σi x(i)

1 ⊗ · · · ⊗ x(i)
N , (8)

where each of the families {x(i)
1 }i, . . . , {x

(i)
N }i would be respectively orthonormal, and where the σi’s would

be (positive) real numbers. Our goal is to show that such an HOSVD cannot stand.

The Case of Matrices. In order to understand why such an HOSVD cannot hold, we will begin by seeing a
reason why SVD is possible in the case N = 2 of matrices. Pick a matrix A ∈ Cm×n and assume without loss
of generality that m ≤ n. It is quite natural to consider that the rank of A is m, i.e. that A is of maximal
rank, since if A is randomly chosen in Cm×n — say with a Gaussian distribution applied on each coordinate,
then rank(A) = min{m,n} = m almost surely (see [BFŻ19, Subsection 3.1]). In addition, this assumption will
deeply simplify our calculations. We want to compare the number of real parameter carried by A with those
carried by its SVD.

Proposition 7. If N = 2, with the settings as above, we have:

# real parameters carried by A = # real parameters carried by SVD.

Proof. On the one hand, as A lies in Cm×n, it carries the following number of real parameters:

# real parameters carried by A = 2nm,

because A consists of nm complex coefficients, and each of them is composed with a real part and an imaginary
part. On the other hand, its SVD is of the form:

m∑
i=1

σi xiy∗i ,

where the σi’s are positive real numbers, and where {xi}i and {yi}i are orthogonal families of Cm and Cn

respectively. First, the σi’s provide m real parameters. Secondly, let us show that the family {yi}i ⊆ Cn

11
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carries 2nm−m2 real parameters. These vectors are normalized, so y1 ∈ Cn carries 2n− 1 real parameters.
Then, as y2 is orthogonal to y1, we have following two conditions:

<
(
〈y1, y2〉

)
= 0 and =

(
〈y1, y2〉

)
= 0,

and it yields that y2 carries 2n − 1 − 2 parameters. Similarly, for any 1 ≤ k ≤ m, using the facts that yk
is normalized and that it is orthogonal to each of y1, . . . , yk−1, we get that yk carries 2n − (2k − 1) real
parameters. In result, the family {yi}i carries the following number of real parameters:

# real parameters in {yi}i =
m∑
k=1

(
2n− (2k − 1)

)
= 2nm−

m∑
k=1

(2k − 1)︸ ︷︷ ︸
=m2 by induction

= 2nm−m2.

Thirdly, one may similarly show that the family {xi}i ⊆ Cm carries m2 real parameters. Finally, there is a
last condition, we have not to take into consideration the phase of the xi’s since we can reach any wanted
phase for xiy∗i by simply changing the phase of yi. So we need to remove m real parameters. At the end of
the day, the number of real parameters for the SVD is the following:

# real parameters carried by SVD = m+
(
2nm−m2)+m2 −m = 2nm.

Hence, we have the same number of real parameters contained in A and the SVD, which explains why it could
work in the bipartite case N = 2.

The General case. Now, let us consider the case of higher-order tensors, i.e. when N ≥ 3. Let a tensor
ΨN ∈ H := Cn1 ⊗ · · · ⊗CnN and assume without loss of generality that n1 = min

{
nk : 1 ≤ k ≤ N

}
. For the

sake of convenience, we will suppose as in the above case of matrices that the rank rank(ΨN ) of ΨN is equal
to n1. Again, the strategy consists in comparing the number of real parameters carried by ΨN and by the
HOSVD.

Proposition 8. If N ≥ 3, with the settings as above, we have:

# real parameters carried by ΨN >> # real parameters carried by HOSVD. (9)

Proof. In order to prove it, our main arguments will be similar to the ones in the proof of Proposition 7, so
all the details will not be provided again. On the one hand, we observe that ΨN ∈ Cn1 ⊗ · · · ⊗ CnN carries
the following number of real parameters:

# real parameters carried by ΨN = 2n1 × · · · × nN .

On the other hand, recall from (8) that HOSVD is of the following form:

ΨN =
n1∑
i=1

σi x(i)
1 ⊗ · · · ⊗ x(i)

N .

So, without considering the relations of phase cancelation between parties, the number of real parameters
carried by HOSVD can be majored by:

# real param. carried by HOSVD ≤ n1︸︷︷︸
due to the σi’s

+ n2
1︸︷︷︸

due to {x(i)
1 }i

+
(
2n1n2 − n2

1
)︸ ︷︷ ︸

due to {x(i)
2 }i

+ · · ·+
(
2n1nN − n2

1
)︸ ︷︷ ︸

due to {x(i)
N
}i

≤ n2
1 + n2

1 +
(
2n2

2 − n2
1
)

+ · · ·+
(
2n2

N − n2
1
)

= 2
N∑
k=1

n2
k − (N − 1)n2

1.

Thereby, we obtain the wanted inequality (9) when the dimensions ni are big enough — otherwise, use the
relations of phase cancelation between parties as in the case of matrices and get the same inequality.
Thus, HOSVD would have been a great tool to simplify some computations with tensors, but we fall upon
the disappointing fact that it cannot exist in the multipartite case N ≥ 3. However, one may try to approach
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it in order to keep some of the interesting properties of the SVD, and this is the motivation of the following
decomposition.

The Canonical Polyadic Decomposition. In principle, the canonical polyadic decomposition (CPD) is meant
to approximate a tensor ΨN with a sum of finitely many rank-one tensors. This notion was first proposed
by Hitchcock in 1927 [Hit27], who called this decomposition the polyadic form of a tensor; but it needed
to wait until the 70’s to get known, under the name CANDECOMP (canonical decomposition) [CC70] and
PARAFAC (parallel factors) [Har70]. All these decompositions will be designated here by canonical polyadic
decomposition (CPD) as in our main references [KB09, RSG17].

Definition. Given a tensor ΨN ∈ H, the CPD consists in finding a tensor Ψ̂N ∈ H that minimizes the
quantity:

||ΨN − Ψ̂N ||, where Ψ̂N is of the form: Ψ̂N :=
R∑
i=1

λr x(i)
1 ⊗ · · · ⊗ x(i)

N , (10)

for some positive integer R, some real numbers λj and some normalized vectors x(i)
j ∈ Cnj , for j = 1, . . . , N

and i = 1, . . . , R. The norm || ·|| used here is the norm induced by the scalar product 〈·, ·〉 defined in (5). Such
a decomposition always exists, but we may wonder if it is unique. In fact, even though rank decompositions
are generally not unique in the case of matrices, it is often the case for higher-order tensors, as we can see in
[RSG17, 4.1.4] and in [KB09, 3.2] which provide us with a sufficient and necessary condition for uniqueness.

Algorithms. In order to compute such a decomposition, one may use an alternating least square algorithm,
which is a method proposed in the two papers of the 70’s [CC70, Har70] that we cited above. The main idea
of this algorithm results in minimizing the the norm ||ΨN − Ψ̂N || while fixing all the vectors x(i)

2 , . . . , x(i)
N

except the x(i)
1 ’s, for all 1 ≤ i ≤ R, and then repeating this step for the following vectors until we reach

some stopping criterion. An issue with this algorithm is that it might be slow to converge, and that it might
not even converge toward a global minimum depending on initial conditions. This is why we have other
algorithms, e.g. the Jenrich’s algorithm or the tensor power method, where both are more efficient than the
alternating least square algorithm, but they are only available on particular cases of tensors. Actually, there
is no perfect procedure for fitting the CPD for a given number of components. The difficulty comes from the
fact that finding the rank of a tensor is NP-hard, as seen in the former subsection, so it is difficult to chose
a relevant parameter R, and data is usually corrupted by some kind of noise. Find more details in [RSG17,
4.1] and [KB09, 3.4].

Link with HOSVD. One may notice that the form of Ψ̂N in (10) is very similar to the HOSVD in (8). In the
case of a "perfect HOSVD", we would have ||ΨN − Ψ̂N || = 0 and R = rank(ΨN ), but it is not always the case
since we previously saw that a general HOSVD cannot hold. In that sense, the CPD is an approximation
of the HOSVD, and it allows us to apply all the good properties of the HOSVD to the approximation Ψ̂N

instead of applying them directly to ΨN .

Applications. The canonical polyadic decomposition finds many applications, first in psychometrics in the
70’s [CC70, Har70], but then also as far as numerical analysis, data mining, neuroscience, and beyond. Refer
to [KB09, 3.5] for an exhaustive list of applications of the CPD. Find also in [RSG17, Sections 5 and 6] some
detailed applications of tensor decomposition to machine learning and estimation of mixture models.

III. Application to Quantum Information:
the Entanglement

Our goal here is to provide an example of how tensor products can apply to Quantum Information Theory.
More precisely, we will study the geometric measure, which is, in some sense, the spectral norm || · ||σ that
we studied in the former section, and we will show the surprising fact that it is not additive. But first, let us
introduce some of the basic notions of quantum information theory.
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III.1. Quantum Information Formalism
Classical Information Theory was first introduced in 1948 by Shannon [Sha48] and it established the mathe-
matical basis of communication. Here is a quotation:

The fundamental problem of communication is that of reproducing at one point either exactly or
approximately a message selected at another point.

It then gave birth to Quantum Information Theory, where the transmission and processing of information
are made by quantum systems, and which is nowadays in wide expansion. It appeals to both Mathematics
and Mathematical Physics, with for instance Group Theory, Probability Theory or also Quantum Statistical
Physics, and finds many applications as in Cryptography. The monographs [Wat11, Tim04, Pre98] contain
more details.

Basic Notions. As before, we work in a tensor space of the form H := Cn1 ⊗ · · · ⊗ CnN , for some positive
integers n1, . . . , nN , whose elements are called (N -partite) states. We will indifferently employ the Dirac
notation |Ψ〉 or simply Ψ to designate any state in H, and we will refer to operators from H to H by greek
letters as ρ or σ. We will often put an N as indice to ΨN or ρN as to recall that we are in the N -partite case.
Recall that the bipartite case N = 2 corresponds to the case of matrices, and that we are in the multipartite
case when N ≥ 3. We denote by 〈Ψ| ∈ H∗ the dual of |Ψ〉 defined by the scalar product over H in (5). This
enables us to define 〈Ψ|ρ|Ψ〉, which is simply the composition of the linear form 〈Ψ| with the operator ρ and
with the state |Ψ〉. It will be helpful for computations to notice the following fact:

〈Ψ⊗ Φ|ρ⊗ σ|Ψ⊗ Φ〉 = 〈Ψ|ρ|Ψ〉 × 〈Φ|σ|Φ〉.

Pure States. A vector |Ψ〉 ∈ H is said to be a pure quantum state when it has norm 1. More generally, one
considers in quantum physics mixed states ρ, which are positive semi-definite operators of unit trace acting
on H. As a particular case of mixed states, we have rank-one projections, which are of the form ρ = |Ψ〉〈Ψ|,
for Ψ a unit vector from H. Note that these states Ψ are also called pure states. Without any precision, we
adopt the convention that a state is thought to be pure, as it is the case for physicists. Notice that when
ρ = |Ψ〉〈Ψ|, we have:

〈Φ|ρ|Φ〉 = 〈Φ|Ψ〉〈Ψ|Φ〉 =
∣∣〈Φ,Ψ〉∣∣2.

In addition, notice that we have a bijective correspondance between pure operators and states:

ρ = |Ψ〉〈Ψ| : H → H ↔ |Ψ〉 ∈ H.

Product States. A state Ψ ∈ H is called product state or separable state if it is of rank 1, i.e. if it is of the
form Ψ = x1 ⊗ · · · ⊗ xN for some vectors xi ∈ Cni , i = 1, . . . , N . Otherwise, Ψ is a linear combinaison of
product states, and is called entangled state. We define in a similar way a product operator or a separable
operator.

Entanglement. As defined hereinabove, a state Ψ ∈ H is entangled if it is not a product state, or in
other words if rank(Ψ) ≥ 2. In that sense, the rank could be seen a tool that measures entanglement. But
we will study in the next subsection a more commonly used tool to do it, namely the geometric measure.
For physicists, entangled states corresponds to correlated events, whereas quantum product states can be
compared to probability vectors of the form p(a, b) = p1(a)p2(b), with independent variables. In other words,
in the case of a product state, a joint physical system AB could be divided into two disjoint subsystems A
and B.

On the contrary, quantum entanglement occurs when two particles share some properties concerning their
position, momentum or polarization that can not have happened by chance. In fact, what is surprising is
that if we know something about one of these characteristics for one particle, then we are able to deduce
something about the same characteristic for the other particle. A common comparaison is maid with a pair
of gloves. Imagine we only find the left glove in our drawer, then we know that the missing glove is the
right glove. Even more than that, one might say that the two gloves are entangled since knowing something
about the first one tells us something about the second one. This topic is one the main ones that separates
Classical Physics from Quantum Physics since entanglement is a basic feature of Quantum Mechanics missing
in Classical Mechanics.
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III.2. Entanglement Measure
In this last subsection, we will introduce an entanglement measure known as geometric measure (GM).
Recently, it has been applied to various parts of Quantum Computation, as for instance in order to show
that most entangled states are too entangled to be useful as computational resources [GFE09]. Recall that
a state |Ψ〉 is a product state if it is of the form |Ψ〉 = x1 ⊗ . . . xN for some xi ∈ Cni , otherwise |Ψ〉 is a
sum of such states and is said to be entangled. In some sense, the geometric measure is meant to describe
"how much" a state |Ψ〉 is entangled, or in other words how much |Ψ〉 is "far" from a product state. After
defining the geometric measure, we will see a link between this measure and the spectral norm || · ||σ, and
eventually we will land on the surprising result that the GM is non-additive. Our main references here will
be [ZCH10, WG03].

The Geometric Measure (GM). Pick anN -partite operator ρ acting on the Hilbert spaceH = Cn1⊗· · ·⊗CnN .
The geometric measure of entanglement (GM) measures the closest distance between ρ and the set of separable
operators SEP , or equivalently the set of pure product states PRO:

G(ρ) := −2 log
(
Λ(ρ)

)
where Λ2(ρ) := max

σ∈SEP
Tr(ρσ) = max

|Ψ〉∈PRO
〈Ψ|ρ|Ψ〉,

where the logarithm log has base 2. Notice that if ρ = |Φ〉〈Φ| is a pure state, then:

Λ2(|Φ〉〈Φ|) = max
|Ψ〉∈PRO

|〈Ψ,Φ〉|2.

Any pure product state |Ψ〉 maximizing Λ2(ρ) is a closest product state to ρ. There exist alternative ways of
defining GM, for instance through a convex roof construction [WG03], which could explain why we give such
a name to this measure.

GM of a Tensor Product. Given two N -partite operators ρ and σ from H = Cn1 ⊗ · · · ⊗ CnN to itself, the
tensor product ρ⊗ σ is a 2N -partite operator that goes from H⊗H to itself. However, here, for the sake of
simplification, we will assume that the first partite of ρ and the first one σ are located in the same lab, in
other words we identify them together so that they may be viewed as a single partite. We apply the same
trick for the second partite of ρ and the second one of σ, and similarly so on and so forth for all of their
parties. At the end of the day, the tensor product ρ⊗ σ may be seen as an N -partite operator, which means
that we are allowed to compute its geometric measure G(ρ ⊗ σ). This will be useful in order to define the
additivity property of the geometric measure.

Additivity. Given an operator ρ : H → H, the asymptotic geometric measure G∞(ρ) (AGM) is the geometric
measure applied to the tensor product ρ⊗n of a large number of copies of ρ:

G∞(ρ) := lim
n→∞

1
n
G
(
ρ⊗n

)
.

Based on this definition, we say that the geometric measure G is additive if G∞(ρ) = G(ρ), and it is strong
additive if G(ρ ⊗ σ) = G(ρ) + G(σ) for any ρ, σ : H → H. Obviously, strong additivity implies additivity,
hence its name. We will see in Proposition 10 that GM is additive for bipartite pure states, but we will see in
Theorem 13 that it is no longer the case in the multipartite antisymmetric case. However, we need to keep
in mind that it is quite difficult to show that the geometric measure G is symmetric or not given a state, or
to compute the asymptotic geometric measure G∞.

Proposition 9. For any operators ρN and ρ′N , we have that GM is sub-additive:

G(ρN ⊗ ρ′N ) ≤ G(ρN ) +G(ρ′N ).

Proof. We have:

Λ2(ρN ⊗ ρ′N ) = max
|Φ〉
〈Φ|ρN ⊗ ρ′N |Φ〉

≥ max
|Φ〉 of the form |ϕ〉⊗|ϕ′〉

〈Φ|ρN ⊗ ρ′N |Φ〉

= max
|ϕ〉
〈ϕ|ρN |ϕ〉 ×max

|ϕ′〉
〈ϕ′|ρ′N |ϕ′〉

= Λ2(ρN )× Λ2(ρ′N ).
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Hence the result using the equality G(ρ) := −2 log
(
Λ(ρ)

)
.

Remarks. There are two other famous entanglement measures, known as relative entropy of entanglement
(REE) and logarithmic global robustness (LGR). But under some theoretical conditions, Hayashi et al showed
in [ZCH10, Proposition 3] that there is an equality relation between GM, REE and LGR which enables us to
treat the additivity problem of REE and LGR through the additivity of GM.

Link between GM and || · ||σ. Recall from Subsection II.3. that we introduced the spectral norm || · ||σ as a
particular case of Schatten norm. Now, in the pure case where ρN is of the form ρN = |Ψ〉〈Ψ| for some state
|Ψ〉 ∈ H, there is a link between the geometric measure G and the spectral norm || · ||σ. Indeed, we have:

Λ2(ρN ) = max
||xi||=1

〈
x1 ⊗ · · · ⊗ xN |ρN |x1 ⊗ · · · ⊗ xN

〉
= max
||xi||=1

∣∣〈x1 ⊗ · · · ⊗ xN |Ψ
〉∣∣2 = ||Ψ||2σ.

So G(ρN ) = −2 log
(
||Ψ||σ

)
. Note that there is also a link between GM and the nuclear norm || · ||∗: they

attain their maximal for the same states [DFLW17]. From the link between GM and || · ||σ, one can deduce
that GM is strong additive for pure bipartite states as stated in the following proposition.

Proposition 10. For N = 2, we may associate any two pure operators ρ = |Ψ〉〈Ψ| and σ = |Φ〉〈Φ| to
matrices A and B respectively. Then GM is strong additive, i.e. :

G(A⊗ B) = G(A) +G(B).

Proof. Recall from Proposition 5 that, when N = 2, the spectral norm || · ||σ is simply of the form
||A||σ = σ1(A), i.e. it is the biggest singular value (note that the quoted proposition requires that A has
maximal rank, but this part of the proposition does not need this assumption). One may see that σ1 is
multiplicative in the sense that σ1(A⊗ B) = σ1(A)×σ1(B) because the singular values of a tensor product are
defined as the singular values of the factors. Therefore, we have:

Λ2(A⊗ B) = ||A⊗ B||2σ = σ1(A⊗ B)2 = σ1(A)2 × σ1(B)2 = ||A||2σ × ||B||2σ = Λ2(A)× Λ2(B),

which implies the wanted result using G(ρ) := −2 log
(
Λ(ρ)

)
.

Non-additivity of GM. The non-additivity of GM is a quite astonishing fact since GM is additive in many
cases of both practical and theoretical interest; see for instance [ZCH10, Theorem 5] that states that GM is
additive for non-negative multipartite states. In other words, before wondering about the non-additivity of
GM, no one would intuitively call it into question. Indeed, historically, since GM was defined in 1995 [SHI95],
it has been conjectured to be additive, until the surprising discovery of Werner and Holevo in 2002 [WH02].
They discovered that GM is non-additive in the case of antisymmetric multipartite states, which is what we
will aim to show hereinbelow. See [ZCH10, Section 5] for a statistical approach that shows that almost all
multipartite pure states have non-additive GM.

Symmetric and Antisymmetric States. A pure product state |ΨN 〉 = x1⊗· · ·⊗xN ∈ H is said to be symmetric
if it remains unchanged after permuting its parties with an odd permutation σ:

|ΨN 〉 = x1 ⊗ · · · ⊗ xN = xσ(1) ⊗ · · · ⊗ xσ(N).

Similarly, we say that a pure product state |ΨN 〉 = x1⊗· · ·⊗xN ∈ H is antisymmetric if an odd permutation
of its parties induces a sign change. Now, these notions of symmetric and antisymmetric states could be
generalized to any pure state by linear combinaison of pure product states, and then more generally to any
state ρN by convex combinaison of pure states. We define in a similar way symmetric and antisymmetric
operators.

Proposition 11. [ZCH10, Proposition 4]. Given a multipartite symmetric operator ρ, any closest product
state |Ψ〉 to ρ (i.e. a pure product state |Ψ〉 maximizing Λ2(ρ)) is necessarily also symmetric. Similarly
for antisymmetric states.
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Proposition 12. [ZCH10, Proposition 16]. Given an N -partite antisymmetric state ρN : H → H, and
given a closest product state |ΨN 〉 = x1 ⊗ · · · ⊗ xN to ρ, the set

{
x1, . . . , xN

}
of is orthogonal.

Theorem 13 (Non-additivity of GM). [ZCH10, Theorem 17]. When N ≥ 3, GM is non-additive for anti-
symmetric operators. More precisely, given any two N -partite antisymmetric operators ρN and ρ′N from
H to itself, we have:

G(ρN ⊗ ρ′N ) < G(ρN ) +G(ρ′N ).

Proof. Recall from the paragraph GM of a Tensor Product at the beginning of the current subsection that
the parties of ρN and ρ′N are identified so that we may view the tensor product ρN ⊗ ρ′N not only as a
2N -partite operator, but also as an N -partite operator. Now, as ρN and ρ′N are antisymmetric, the tensor
product ρN ⊗ ρ′N is necessarily symmetric because an odd permutation of the parties changes the signs of
both ρN and ρ′N , thus ρN ⊗ ρ′N remains unchanged after permuting the parties. Therefore, using Proposition
11, as N ≥ 3, any closest product state |Ψ〉 to ρN ⊗ ρ′N needs also to be symmetric.
Now, let us assume that we may write |Ψ〉 = |ΦN 〉 ⊗ |Φ′N 〉 for some closest product states |ΦN 〉 and |Φ′N 〉
to respectively ρN and ρ′N , and let us show that this leads to a contradiction. Write |ΦN 〉 = y1 ⊗ · · · ⊗ yN
and |Φ′N 〉 = y′1 ⊗ · · · ⊗ y′N . Since ρN and ρ′N are antisymmetric, we have by Proposition 12 that the sets{

y1, . . . , yN
}
and

{
y′1, . . . , y

′
N

}
are respectively orthogonal. We have:

|Ψ〉 = |ΦN 〉 ⊗ |Φ′N 〉 =
(
y1 ⊗ · · · ⊗ yN

)
⊗
(
y′1 ⊗ · · · ⊗ y′N

)
=

(
y1 ⊗ y′1

)
⊗
(
y2 ⊗ y′2

)
⊗
(
y3 ⊗ y′3

)
⊗ · · · ⊗

(
yN ⊗ y′N

)
=

(
y2 ⊗ y′2

)
⊗
(
y1 ⊗ y′1

)
⊗
(
y3 ⊗ y′3

)
⊗ · · · ⊗

(
yN ⊗ y′N

)
because |Ψ〉 is symmetric

It follows that y1 ⊗ y′1 = y2 ⊗ y′2 up to a phase, and therefore y1 = y2 up to a phase, which contradicts the
fact that

{
y1, . . . , yN

}
is orthogonal.

Hence, there is no closest product state |Ψ〉 to ρN ⊗ ρ′N that could be written as a tensor product of closest
product states to ρN and ρ′N respectively, which implies:

Λ2(ρN ⊗ ρ′N ) = 〈Ψ|ρN ⊗ ρ′N |Ψ〉 = max
|ϕ〉
〈ϕ|ρN ⊗ ρ′N |ϕ〉

> max
|ϕ〉 of the form |ϕN 〉⊗|ϕ′N 〉

〈ϕ|ρN ⊗ ρ′N |ϕ〉

= max
|ϕN 〉
〈ϕN |ρN |ϕN 〉 ×max

|ϕ′
N
〉
〈ϕ′N |ρ′N |ϕ′N 〉

= 〈ΦN |ρN |ΦN 〉 × 〈Φ′N |ρ′N |Φ′N 〉 = Λ2(ρN )× Λ2(ρ′N ).

Whence, we obtain the wanted inequality G(ρN ⊗ ρ′N ) < G(ρN ) +G(ρ′N ).

Conclusions
As a short conclusion, let us recap all that we have seen. First of all, we introduced the rank rank(A) of
a matrix A ∈ Cm×n as the smallest integer r such that A =

∑r
i=1 xiy∗i for some vectors xi and yi, and we

used a similar definition when we generalized it to tensors. As opposed to tensors whose rank is NP-hard
to compute, we saw that the complexity of computing rank(A) is O

(
min(m,n)2 max(m,n)

)
using Gaussian

elimination, and we also proved that the set of matrices of rank at most k is closed, contrary to tensors for
which we exhibited a counter-example.

In addition, we analyzed two matrix decompositions, the spectral decomposition and the Singular Value
Decomposition. The first decomposition was in particular helpful in order to define objects as

√
A. We tried

to generalize them to tensors, but both of these generalizations failed; that is the reason why we thought
about the Canonical Polyadic Decomposition as a convenient approximation.

Moreover, we studied two particular cases of the Schatten norms: the trace norm || · ||1 and the operator
norm || · ||∞. We generalized these norms so that we may get tensor norms, and we obtained the nuclear
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norm || · ||∗ and the spectral norm || · ||σ. We also viewed some links with the SVD and, even though those
norms are NP-hard to compute, we proposed a few alternating methods of computations.

Last but not least, we focused on Quantum Information Theory, trying to apply some results about tensors
in it. After introducing the basis of this new formalism, we mainly worked on the geometric measure of
entanglement. In particular, we saw that this measure is always sub-additive, that it is additive in the
bipartite pure case, and eventually that it is surprisingly non-additive in the multi-partite antisymmetric
case.
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