Does the Uncloneable Bit Exist?

Pierre Botteron (Ottawa, Friday December 8, 2023.)

Ongoing Work with...

(Ottawa)

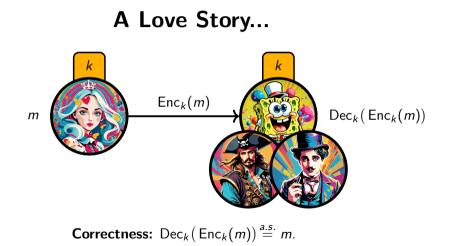
(Waterloo)

(Toulouse)

(Toulouse) (Ottawa)

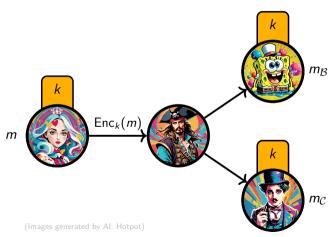
Contents

1 The Cloning Game


2 Known Results

3 Our Ideas

The Cloning Game


A Love Story... The Cloning Game Uncloneable Security

(Images generated by AI: Hotpot)

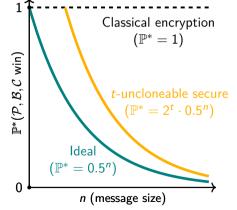
A Love Story... The Cloning Game Uncloneable Security

The Cloning Game

- **Rule:** $\mathcal{P}, \mathcal{B}, \mathcal{C}$ win iff. $m = m_{\mathcal{B}} = m_{\mathcal{C}}$.
- If $\operatorname{Enc}_k(m)$ is classical, then $\mathbb{P}(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) = 1$. So we are intered in $\operatorname{Enc}_k(m) \in \mathcal{H}$ quantum state.
- If $m \in \{0,1\}^n$ and \mathcal{P} sends a uniformly random message $m_{\mathcal{B}} = m_{\mathcal{C}}$ to \mathcal{B}, \mathcal{C} , then $\mathbb{P}(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) = 1/2^n = 0.5^n$.
- **Open problem:** Find an encryption scheme that is "secure".

A Love Story... The Cloning Game Uncloneable Security

Uncloneable Security¹


Definition. The encryption scheme Enc_k is said to be $t(\lambda)$ -uncloneable secure, with $0 \le t(\lambda) \le n$, if the optimal winning probability is "almost" the random one:

$$\mathbb{P}^*(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) \leq 2^{t(\lambda)} \cdot 0.5^n + \operatorname{negl.}(\lambda),$$

where $\lambda \in \mathbb{N}$ is the security parameter, and n is the size of the message m.

Remarks. • t = 0 is ideal.

¹Broadbent and Lord. Uncloneable Quantum Encryption via Oracles. 2020.

Known Results

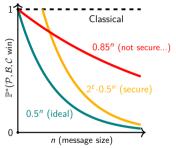
Open Question Attempt Without Assumption Attempt in the QROM Model Attempt with Interactions and Eavesdropping Assumptions Attempts Under Other Assumptions

Open Question

• Gottesman² introduced a scheme that detects if an adversary could have had information about the plaintext when it was ecnrypted.

• **Open Question.** Is it possible to find an ecryption scheme that would prevent the splitting of a ciphertext?

²Gottesman. "Uncloneable Encryption". In: *Quantum Info. Comput.* (2003).


Open Question Attempt Without Assumption Attempt in the QROM Model Attempt with Interactions and Eavesdropping Assumptions Attempts Under Other Assumptions

Attempt Without Assumption

Encryption scheme: \mathcal{A} encrypts her message $m \in \{0, 1\}^n$ in a Wiesner state $|m^k\rangle := H^{k_1}|m_1\rangle \otimes \cdots \otimes H^{k_n}|m_n\rangle$, with a key $k \in \{0, 1\}^n$:

$$\operatorname{Enc}_k(m) := |m^k\rangle\langle m^k|.$$

Decryption scheme: $Dec_k(\rho) := measurement of H^k \rho H^k$ in the computational basis.

Theorem ([Tomamichel – Fehr – Kaniewski – Wehner]³)

Using this Enc_k , no matter what $\mathcal{P}, \mathcal{B}, \mathcal{C}$ do, their winning probability is bounded by: $\mathbb{P}(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) \leq (\cos^2(\pi/8))^n \approx 0.854^n$.

³Tomamichel et al. "A monogamy-of-entanglement game with applications to device-independent quantum cryptography". In: *New Journal of Physics* (2013).

Open Question Attempt Without Assumption Attempt in the QROM Model Attempt with Interactions and Eavesdropping Assumptions Attempts Under Other Assumptions

Attempt in the Quantum Random Oracle Model

• **Definition.** "A quantum-secure pseudorandom function (qPRF) is a keyed function f_{λ} : $\{0,1\}^{\lambda} \times \{0,1\}^{\ell_{in}(\lambda)} \to \{0,1\}^{\ell_{out}(\lambda)}$, with $\lambda \in \mathbb{N}$, which appears random to an efficient quantum adversary who only sees its input/output behaviour and is ignorant of the particular key being used."

$$\begin{array}{c} \text{Encryption} \\ m \in \{0,1\}^n & \textcircled{1} x \in_R \{0,1\}^{\lambda}; \\ k = (s,\theta) & \textcircled{2} c := m \oplus f_{\lambda}(s,x); \\ \in \{0,1\}^{2\lambda} & \textcircled{3} \rho := |c\rangle\langle c| \otimes |x^{\theta}\rangle\langle x^{\theta}|. \end{array} \xrightarrow{\rho} \begin{array}{c} \text{Enc}_k(m) \\ = \rho \\ & \vdots \\ \in \{0,1\}^{2\lambda} & \textcircled{3} \rho := |c\rangle\langle c| \otimes |x^{\theta}\rangle\langle x^{\theta}|. \end{array} \xrightarrow{\rho} \begin{array}{c} \text{Enc}_k(m) \\ = \rho \\ & \vdots \\ \in \{0,1\}^{2\lambda} & \textcircled{3} m' := c \oplus f_{\lambda}(s,r). \end{array} \xrightarrow{\rho} m'$$

Theorem ([Broadbent – Lord]⁴)

If the qPRF is modeled by a q. oracle, this encryption is $\log_2(9)$ -unlconeable secure: $\mathbb{P}(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) \leq 9 \times 0.5^n$.

Moreover, if $\mathcal{P}, \mathcal{B}, \mathcal{C}$ cannot share any entanglement, then the ideal case is achieved: $\mathbb{P}(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) \leq 0.5^n$.

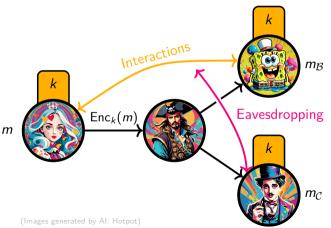
⁴Broadbent and Lord. Uncloneable Quantum Encryption via Oracles. 2020.

Open Question Attempt Without Assumption Attempt in the QROM Model Attempt with Interactions and Eavesdropping Assumptions Attempts Under Other Assumptions

• Still in the QROM model:

Theorem ([Ananth – Kaleoglu – Li – Liu – Zhandry]⁵)

In the QROM model, there exist encryption schemes that are uncloneable-indistinguishable secure.


Proof trick: use subset coset states.

• **Remark.** When not in the QROM model, they prove that a large class of encryption schemes cannot satisfy unclonable-indistinguishability.

⁵Ananth et al. "On the Feasibility of Unclonable Encryption, and More". In: 2022.

Open Question Attempt Without Assumption Attempt in the QROM Model Attempt with Interactions and Eavesdropping Assumptions Attempts Under Other Assumptions

Attempt with Interactions and Eavesdropping Assumptions

• Theorem ([Broadbent – Culf]): For quantum encryption schemes of classical messages with interactive decryption, there is an equivalence between uncloneable and uncloneableindistinguishable security.

(Broadbent and Culf. "Uncloneable Cryptographic Primitives with Interaction". In: (2023). arXiv: 2303.00048)

• **Techniques:** Leaky MoE property and subspace coset MoE game.

Open Question Attempt Without Assumption Attempt in the QROM Model Attempt with Interactions and Eavesdropping Assumptions Attempts Under Other Assumptions

Attempts Under Other Assumptions

Theorem ([Ananth – Kaleoglu]⁶)

- Under the assumption of post-quantum one-way functions, it is possible to turn an uncloneable encryption scheme into one with semantic security.
- Under the assumption of post-quantum public key encryption, it is possible to turn the scheme into a public-key uncloneable encryption scheme.

Theorem ([Kundu – Tan]⁷)

In a variant where A sends different keys to B and C, the uncloneable encryption can be achieved device-independently, i.e. without trusting the quantum states and measurements used in the scheme.

⁶Ananth and Kaleoglu. "Unclonable Encryption, Revisited". In: 2021. ⁷Kundu and Tan. *Device-independent uncloneable encryption*. 2023. arXiv: 2210.01058.

Open Question Attempt Without Assumption Attempt in the QROM Model Attempt with Interactions and Eavesdropping Assumptions Attempts Under Other Assumptions

Theorem ([Gheorghiu – Metger – Poremba]⁸)

Under the assumption of post-quantum hardness of the learning with errors (LWE) problem, there is a protocol for uncloneable encryption.

Theorem ([Chevalier – Hermouet – Vu]⁹)

2311.16663.

Assume the existence of post-quantum indistinguishability obfuscation, one-way functions, and compute-and-compare obfuscation for the class of unpredictable distributions. Then:

- There exists a symmetric one-time unclonable encryption scheme with correctness and indistinguishable anti-piracy security;
- There exists a public-key reusable unclonable encryption scheme with correctness and indistinguishable anti-piracy security."

⁸Gheorghiu, Metger, and Poremba. *Quantum cryptography with classical communication: parallel remote state preparation for copy-protection, verification, and more.* 2022. arXiv: 2201.13445. ⁹Chevalier, Hermouet, and Vu. *Unclonable Cryptography in the Plain Model.* 2023. arXiv:

Our Ideas

1. Half-Space Cloning

3 View the Adversaries as a Cloner

1. Half-Space Cloning

(Hidden in the online version.)

1. Half-Space Cloning

2. Representation Theory and Free Probabilities

3. View the Adversaries as a Cloner

(Hidden in the online version.)

1. Half-Space Cloning

- 2. Representation Theory and Free Probabilities
- 3. View the Adversaries as a Cloner

3. View the Adversaries as a Cloner

(Hidden in the online version.)

Bibliography

- Ananth and Kaleoglu. "Unclonable Encryption, Revisited". In: 2021.
- Ananth et al. "On the Feasibility of Unclonable Encryption, and More". In: 2022.
- **Broadbent and Culf.** "Uncloneable Cryptographic Primitives with Interaction". In: (2023). arXiv: 2303.00048.
- **Broadbent and Lord**. Uncloneable Quantum Encryption via Oracles. 2020. DOI: 10.4230/LIPIcs.TQC.2020.4.
- Chevalier, Hermouet, and Vu. Unclonable Cryptography in the Plain Model. 2023. arXiv: 2311.16663.
- **Gheorghiu**, Metger, and Poremba. *Quantum cryptography with classical communication: parallel remote state preparation for copy-protection, verification, and more.* 2022. arXiv: 2201.13445.
- **Gottesman**. "Uncloneable Encryption". In: *Quantum Info. Comput.* (2003).
- Kundu and Tan. Device-independent uncloneable encryption. 2023. arXiv: 2210.01058.
- **Tomamichel et al.** "A monogamy-of-entanglement game with applications to device-independent quantum cryptography". In: *New Journal of Physics* (2013). DOI: 10.1088/1367-2630/15/10/103002.