Zoes the Uncloneable Bit Exist?

Pierre Botteron (Ottawa, Friday December 8, 2023.)

Ongoing Work with...

(Ottawa)

Contents

[The Cloning Game](#page-3-0)

[Known Results](#page-7-0)

[Our Ideas](#page-15-0)

The Cloning Game

[A Love Story...](#page-4-0) [The Cloning Game](#page-5-0) [Uncloneable Security](#page-6-0)

Correctness: $\text{Dec}_k(\text{Enc}_k(m)) \stackrel{a.s.}{=} m$.

(Images generated by AI: [Hotpot\)](https://hotpot.ai/art-generator)

[A Love Story...](#page-4-0) [The Cloning Game](#page-5-0) [Uncloneable Security](#page-6-0)

The Cloning Game

- **Rule:** P, B, C win iff. $m = m_B = m_C$.
- If $Enc_k(m)$ is classical, then $\mathbb{P}(\mathcal{P}, \mathcal{B}, \mathcal{C}$ win) = 1. So we are intered in $Enc_k(m) \in \mathcal{H}$ quantum state.
- If $m \in \{0,1\}^n$ and P sends a uniformly random message $m_B = m_C$ to B, C , then $\mathbb{P}(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) = \frac{1}{2^n} = 0.5^n$.
- **Open problem:** Find an encryption scheme that is "secure".

[A Love Story...](#page-4-0) [The Cloning Game](#page-5-0) [Uncloneable Security](#page-6-0)

Uncloneable Security¹

Definition. The encryption scheme Enc_k is said to be $t(\lambda)$ -uncloneable secure, with $0 \le t(\lambda) \le n$, if the optimal winning probability is "almost" the random one:

$$
\mathbb{P}^*(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) \leq 2^{t(\lambda)} \cdot 0.5^n + \text{negl.}(\lambda),
$$

where $\lambda \in \mathbb{N}$ is the security parameter, and n is the size of the message m .

Remarks. \bullet $t = 0$ is ideal.

¹Broadbent and Lord. Uncloneable Quantum Encryption via Oracles. 2020.

Known Results

[Open Question](#page-8-0) [Attempt Without Assumption](#page-9-0) [Attempt in the QROM Model](#page-10-0) [Attempt with Interactions and Eavesdropping Assumptions](#page-12-0) [Attempts Under Other Assumptions](#page-13-0)

Open Question

• Gottesman² introduced a scheme that detects if an adversary could have had information about the plaintext when it was ecnrypted.

• **Open Question.** Is it possible to find an ecryption scheme that would prevent the splitting of a ciphertext?

²Gottesman. "Uncloneable Encryption". In: Quantum Info. Comput. (2003).

[Open Question](#page-8-0) [Attempt Without Assumption](#page-9-0) [Attempt in the QROM Model](#page-10-0) [Attempt with Interactions and Eavesdropping Assumptions](#page-12-0) [Attempts Under Other Assumptions](#page-13-0)

Attempt Without Assumption

Encryption scheme: A encrypts her message $m \in \{0,1\}^n$ in a Wiesner state $|m^k\rangle:=H^{k_1}|m_1\rangle\otimes\cdots\otimes H^{k_n}|m_n\rangle$, with a key $k \in \{0,1\}^n$:

$$
\mathsf{Enc}_k(m) := |m^k\rangle\langle m^k|.
$$

Decryption scheme: Dec $_k(\rho)$:= measurement of $H^k \rho H^k$ in the computational basis.

Theorem ([Tomamichel – Fehr – Kaniewski – Wehner] $3)$

Using this Enc_k, no matter what P , B , C do, their winning probability is bounded by: $\mathbb{P}(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) \leq (\cos^2(\pi/s))^n \approx 0.854^n.$

³Tomamichel et al. "A monogamy-of-entanglement game with applications to device-independent quantum cryptography". In: New Journal of Physics (2013). 10/20

[Open Question](#page-8-0) [Attempt Without Assumption](#page-9-0) [Attempt in the QROM Model](#page-10-0) [Attempt with Interactions and Eavesdropping Assumptions](#page-12-0) [Attempts Under Other Assumptions](#page-13-0)

Attempt in the Quantum Random Oracle Model

• **Definition.** "A **quantum-secure pseudorandom function (qPRF)** is a keyed function f*^λ* : $\{0,1\}^{\lambda}\times\{0,1\}^{\ell_{in}(\lambda)}\to\{0,1\}^{\ell_{out}(\lambda)}$, with $\lambda\in\mathbb{N}$, which appears random to an efficient quantum adversary who only sees its input/output behaviour and is ignorant of the particular key being used."

Encryption	Decryption																																						
$m \in \{0, 1\}^n$	$0 \times \in_R \{0, 1\}^{\lambda};$	$\in [0, 1]^2$																																					

Theorem ([Broadbent – Lord]⁴)

If the qPRF is modeled by a q. oracle, this encryption is $\log_2(9)$ -unlconeable secure: $\mathbb{P}(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) \leq 9 \times 0.5^n$.

Moreover, if P, B, C cannot share any entanglement, then the ideal case is achieved: $\mathbb{P}(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) \leq 0.5^n$.

⁴Broadbent and Lord. Uncloneable Quantum Encryption via Oracles. 2020 . 11/20

[Open Question](#page-8-0) [Attempt Without Assumption](#page-9-0) [Attempt in the QROM Model](#page-10-0) [Attempt with Interactions and Eavesdropping Assumptions](#page-12-0) [Attempts Under Other Assumptions](#page-13-0)

• Still in the QROM model:

$\sf Theorem~([Ananth-Kaleoglu-Li-Liu-Zhandry]^5)$

In the QROM model, there exist encryption schemes that are uncloneable-indistinguishable secure.

Proof trick: use subset coset states.

• **Remark.** When not in the QROM model, they prove that a large class of encryption schemes cannot satisfy unclonable-indistinguishability.

⁵Ananth et al. "On the Feasibility of Unclonable Encryption, and More". In: 2022.

[Open Question](#page-8-0) [Attempt Without Assumption](#page-9-0) [Attempt in the QROM Model](#page-10-0) [Attempt with Interactions and Eavesdropping Assumptions](#page-12-0) [Attempts Under Other Assumptions](#page-13-0)

Attempt with Interactions and Eavesdropping Assumptions

• Theorem ([Broadbent – Culf]): For quantum encryption schemes of classical messages with interactive decryption, there is an equivalence between uncloneable and uncloneableindistinguishable security.

(Broadbent and Culf. "Uncloneable Cryptographic Primitives with Interaction". In: (2023). arXiv: [2303.00048](https://arxiv.org/abs/2303.00048))

• **Techniques:** Leaky MoE property and subspace coset MoE game.

[Open Question](#page-8-0) [Attempt Without Assumption](#page-9-0) [Attempt in the QROM Model](#page-10-0) [Attempt with Interactions and Eavesdropping Assumptions](#page-12-0) [Attempts Under Other Assumptions](#page-13-0)

Attempts Under Other Assumptions

Theorem $([{\sf Ananth-kaleoglu}]^6)$

- Under the assumption of post-quantum one-way functions, it is possible to turn an uncloneable encryption scheme into one with semantic security.
- Under the assumption of post-quantum public key encryption, it is possible to turn the scheme into a public-key uncloneable encryption scheme.

Theorem ([Kundu – Tan]⁷)

In a variant where A sends different keys to B and C, the uncloneable encryption can be achieved device-independently, i.e. without trusting the quantum states and measurements used in the scheme.

⁶Ananth and Kaleoglu. "Unclonable Encryption, Revisited". In: 2021. ⁷Kundu and Tan. Device-independent uncloneable encryption. 2023. arXiv: [2210.01058](https://arxiv.org/abs/2210.01058).

[Open Question](#page-8-0) [Attempt in the QROM Model](#page-10-0) [Attempt with Interactions and Eavesdropping Assumptions](#page-12-0) [Attempts Under Other Assumptions](#page-13-0)

Theorem ([Gheorghiu – Metger – Poremba] 8)

Under the assumption of post-quantum hardness of the learning with errors (LWE) problem, there is a protocol for uncloneable encryption.

Theorem ([Chevalier – Hermouet – Vu]⁹)

Assume the existence of post-quantum indistinguishability obfuscation, one-way functions, and compute-and-compare obfuscation for the class of unpredictable distributions. Then:

- There exists a symmetric one-time unclonable encryption scheme with correctness and indistinguishable anti-piracy security;
- There exists a public-key reusable unclonable encryption scheme with correctness and indistinguishable anti-piracy security."

⁸Gheorghiu, Metger, and Poremba. Quantum cryptography with classical communication: parallel remote state preparation for copy-protection, verification, and more. 2022. arXiv: [2201.13445](https://arxiv.org/abs/2201.13445). 9 Chevalier, Hermouet, and Vu. Unclonable Cryptography in the Plain Model. 2023. arXiv: [2311.16663](https://arxiv.org/abs/2311.16663).

Our Ideas

[1. Half-Space Cloning](#page-16-0)

-
- [3. View the Adversaries as a Cloner](#page-18-0)

1. Half-Space Cloning

(Hidden in the online version.)

[2. Representation Theory and Free Probabilities](#page-17-0) [3. View the Adversaries as a Cloner](#page-18-0)

(Hidden in the online version.)

[1. Half-Space Cloning](#page-16-0)

-
- [3. View the Adversaries as a Cloner](#page-18-0)

3. View the Adversaries as a Cloner

(Hidden in the online version.)

Bibliography

- 量 Ananth and Kaleoglu. "Unclonable Encryption, Revisited". In: 2021.
- Ħ Ananth et al. "On the Feasibility of Unclonable Encryption, and More". In: 2022.
- E Broadbent and Culf. "Uncloneable Cryptographic Primitives with Interaction". In: (2023). arXiv: [2303.00048](https://arxiv.org/abs/2303.00048).
- F Broadbent and Lord. Uncloneable Quantum Encryption via Oracles. 2020. DOI: [10.4230/LIPIcs.TQC.2020.4](https://doi.org/10.4230/LIPIcs.TQC.2020.4).
- F Chevalier, Hermouet, and Vu. Unclonable Cryptography in the Plain Model. 2023. arXiv: [2311.16663](https://arxiv.org/abs/2311.16663).
- F Gheorghiu, Metger, and Poremba. Quantum cryptography with classical communication: parallel remote state preparation for copy-protection, verification, and more. 2022. arXiv: [2201.13445](https://arxiv.org/abs/2201.13445).
- F Gottesman. "Uncloneable Encryption". In: Quantum Info. Comput. (2003).

F

- F Kundu and Tan. Device-independent uncloneable encryption. 2023. arXiv: [2210.01058](https://arxiv.org/abs/2210.01058).
	- Tomamichel et al. "A monogamy-of-entanglement game with applications to device-independent quantum cryptography". In: New Journal of Physics (2013). DOI: [10.1088/1367-2630/15/10/103002](https://doi.org/10.1088/1367-2630/15/10/103002).