The Quantum No-Cloning Game

Pierre Botteron (Toulouse, Wednesday January 24, 2024.)

Ongoing Work with...

(Ottawa)

Contents

[Known Results](#page-7-0)

[Our Conjecture](#page-13-0)

The Scenario

[The Scenario](#page-3-0) KNOWN RESULTS OUR CONJECTURE [A Love Story...](#page-4-0) [The Cloning Game](#page-5-0) [Uncloneable Security](#page-6-0)

(Images generated by AI: [Hotpot\)](https://hotpot.ai/art-generator)

[The Scenario](#page-3-0) [Known Results](#page-7-0) OUR CONJECTURE

[A Love Story...](#page-4-0) [The Cloning Game](#page-5-0) [Uncloneable Security](#page-6-0)

The No-Cloning Game

- **Rule:** P, B, C win iff. $m = m_B = m_C$.
- If $Enc_k(m)$ is classical, then $\mathbb{P}(\mathcal{P}, \mathcal{B}, \mathcal{C}$ win) = 1. So we are interested in $\textsf{Enc}_k(m) \in \mathcal{D}(\mathbb{C}^d)$ quantum state.
- If $m \in \{0,1\}^n$ and P sends a uniformly random message $m_B = m_C$ to B, C , then $\mathbb{P}(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) = \frac{1}{2^n} = 0.5^n$.

• **Problem:** Find an encryption scheme for Alice that is "secure".

THE SCENARIO KNOWN Resulter OUR CONJECTURE [A Love Story...](#page-4-0) [The Cloning Game](#page-5-0) [Uncloneable Security](#page-6-0)

Uncloneable Security¹

Definition. The encryption scheme Enc_k is said to be $t(\lambda)$ -uncloneable secure, with $0 \le t(\lambda) \le n$, if the optimal winning probability is "almost" the random one:

$$
\mathbb{P}^*(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) \leq 2^{t(\lambda)} \cdot 0.5^n + \text{negl.}(\lambda),
$$

where $\lambda \in \mathbb{N}$ is the security parameter, and n is the size of the message m .

Remarks. \bullet $t = 0$ is ideal.

¹Broadbent and Lord. Uncloneable Quantum Encryption via Oracles. 2020.

Known Results

[Open Question](#page-8-0) [Attempt Without Assumption](#page-9-0) [Result in the QROM Model](#page-10-0) [Result with Interactions and Eavesdropping](#page-11-0) [Results Under Other Assumptions](#page-12-0)

Open Question

• Gottesman² introduced a scheme that detects if an adversary could have had information about the plaintext when it was ecnrypted.

• **Open Question.** Is it possible to find an ecryption scheme that would prevent the splitting of a ciphertext?

²Gottesman. "Uncloneable Encryption". In: Quantum Info. Comput. (2003).

[The Scenario](#page-3-0) KNOWN RESULTS OUR CONJECTURE [Open Question](#page-8-0) [Attempt Without Assumption](#page-9-0) [Result in the QROM Model](#page-10-0) [Result with Interactions and Eavesdropping](#page-11-0) [Results Under Other Assumptions](#page-12-0)

Attempt Without Assumption

Encryption scheme: A encrypts her message $m \in \{0,1\}^n$ in a Wiesner state $|m^k\rangle:=H^{k_1}|m_1\rangle\otimes\cdots\otimes H^{k_n}|m_n\rangle$, with a key $k \in \{0,1\}^n$:

$$
\mathsf{Enc}_k(m) := |m^k\rangle\langle m^k|.
$$

Decryption scheme: Dec $_k(\rho)$:= measurement of $H^k \rho H^k$ in the computational basis.

Theorem ([Tomamichel – Fehr – Kaniewski – Wehner] $3)$

Using this Enc_k, no matter what P , B , C do, their winning probability is bounded by: $\mathbb{P}^*(P, B, C \text{ win}) = (\cos^2(\pi/s))^n \approx 0.85^n.$

³Tomamichel et al. "A monogamy-of-entanglement game with applications to device-independent quantum cryptography". In: New Journal of Physics (2013). 10 16

[Open Question](#page-8-0) [Attempt Without Assumption](#page-9-0) [Result in the QROM Model](#page-10-0) [Result with Interactions and Eavesdropping](#page-11-0) [Results Under Other Assumptions](#page-12-0)

Result in the Quantum Random Oracle Model

• **Definition.** "A **quantum-secure pseudorandom function (qPRF)** is a keyed function f*^λ* : $\{0,1\}^{\lambda}\times\{0,1\}^{\ell_{in}(\lambda)}\to\{0,1\}^{\ell_{out}(\lambda)}$, with $\lambda\in\mathbb{N}$, which appears random to an efficient quantum adversary who only sees its input/output behaviour and is ignorant of the particular key being used."

\n $m \in \{0, 1\}^n$ \n	\n $\mathbf{D} \times \in_R \{0, 1\}^{\lambda};$ \n	\n $k = (s, \theta)$ \n	\n $\mathbf{D} \times \in_R \{0, 1\}^{\lambda};$ \n	\n $\mathbf{E}_{\text{nc}_k}(m)$ \n	\n $\mathbf{E}_{\text{nc}_k}($																					
--------------------------	---	-------------------------	---	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	-------------------------------------	--------------------------------

Theorem ([Broadbent – Lord]⁴)

If the qPRF is modeled by a q. oracle, this encryption is $\log_2(9)$ -unlconeable secure: $\mathbb{P}(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) \leq 9 \times 0.5^n$.

⁴Broadbent and Lord. Uncloneable Quantum Encryption via Oracles. 2020.

[Open Question](#page-8-0) [Attempt Without Assumption](#page-9-0) [Result in the QROM Model](#page-10-0) [Result with Interactions and Eavesdropping](#page-11-0) [Results Under Other Assumptions](#page-12-0)

Result with Interactions and Eavesdropping

• Theorem ([Broadbent - Culf]): For quantum encryption schemes of classical messages with interactive decryption, there is an equivalence between uncloneable and uncloneableindistinguishable security.

(Broadbent and Culf. "Uncloneable Cryptographic Primitives with Interaction". In: (2023). arXiv: [2303.00048](https://arxiv.org/abs/2303.00048))

[Open Question](#page-8-0) [Attempt Without Assumption](#page-9-0) [Result in the QROM Model](#page-10-0) [Result with Interactions and Eavesdropping](#page-11-0) [Results Under Other Assumptions](#page-12-0)

Results Under Other Assumptions

- Assumption of post-quantum one-way functions or post-quantum public key encryption.⁵
- Variant where ${\cal A}$ sends different keys to ${\cal B}$ and ${\cal C}$. 6
- Assumption of post-quantum hardness of the learning with errors (LWE) problem.⁷
- Assumption of post-quantum indistinguishability obfuscation, one-way functions, and compute-and-compare obfuscation.⁸

⁵Ananth and Kaleoglu. "Unclonable Encryption, Revisited". In: 2021.

⁶Kundu and Tan. Device-independent uncloneable encryption. 2023. arXiv: [2210.01058](https://arxiv.org/abs/2210.01058).

⁷Gheorghiu, Metger, and Poremba. Quantum cryptography with classical communication: parallel remote state preparation for copy-protection, verification, and more. 2022. arXiv: [2201.13445](https://arxiv.org/abs/2201.13445).

⁸Chevalier, Hermouet, and Vu. Unclonable Cryptography in the Plain Model. 2023.

Our Conjecture

[The Scenario](#page-3-0) [Known Results](#page-7-0) OUR CONJECTURE

(Hidden in the online version.)

Bibliography

- Ħ Ananth and Kaleoglu. "Unclonable Encryption, Revisited". In: 2021.
- ĥ Ananth et al. "On the Feasibility of Unclonable Encryption, and More". In: 2022.
- F Broadbent and Culf. "Uncloneable Cryptographic Primitives with Interaction". In: (2023). arXiv: [2303.00048](https://arxiv.org/abs/2303.00048).
- Ħ Broadbent and Lord. Uncloneable Quantum Encryption via Oracles. 2020. DOI: [10.4230/LIPIcs.TQC.2020.4](https://doi.org/10.4230/LIPIcs.TQC.2020.4).
- F Chevalier, Hermouet, and Vu. Unclonable Cryptography in the Plain Model. 2023.
- Ħ Gheorghiu, Metger, and Poremba. Quantum cryptography with classical communication: parallel remote state preparation for copy-protection, verification, and more. 2022. arXiv: [2201.13445](https://arxiv.org/abs/2201.13445).
	- Gottesman. "Uncloneable Encryption". In: Quantum Info. Comput. (2003).

ā. 譶

- Kundu and Tan. Device-independent uncloneable encryption. 2023. arXiv: [2210.01058](https://arxiv.org/abs/2210.01058).
- \equiv Tomamichel et al. "A monogamy-of-entanglement game with applications to device-independent quantum cryptography". In: New Journal of Physics (2013). DOI: [10.1088/1367-2630/15/10/103002](https://doi.org/10.1088/1367-2630/15/10/103002).