The Quantum No-Cloning Game

Pierre Botteron (Toulouse, Wednesday January 24, 2024.)

Ongoing Work with...

(Ottawa)

(Waterloo)

(Toulouse)

(Toulouse) (Ottawa)

Contents

2 Known Results

3 Our Conjecture

The Scenario

A Love Story... The Cloning Game Uncloneable Security

(Images generated by AI: Hotpot)

THE SCENARIO KNOWN RESULTS OUR CONJECTURE A Love Story... The Cloning Game Uncloneable Security

The No-Cloning Game

- **Rule:** $\mathcal{P}, \mathcal{B}, \mathcal{C}$ win iff. $m = m_{\mathcal{B}} = m_{\mathcal{C}}$.
- If $\operatorname{Enc}_k(m)$ is classical, then $\mathbb{P}(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) = 1$. So we are interested in $\operatorname{Enc}_k(m) \in \mathcal{D}(\mathbb{C}^d)$ quantum state.
- If $m \in \{0,1\}^n$ and \mathcal{P} sends a uniformly random message $m_{\mathcal{B}} = m_{\mathcal{C}}$ to \mathcal{B}, \mathcal{C} , then $\mathbb{P}(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) = 1/2^n = 0.5^n$.

• **Problem:** Find an encryption scheme for Alice that is "secure".

THE SCENARIO KNOWN RESULTS Our Conjecture A Love Story... The Cloning Game Uncloneable Security

Uncloneable Security¹

Definition. The encryption scheme Enc_k is said to be $t(\lambda)$ -uncloneable secure, with $0 \le t(\lambda) \le n$, if the optimal winning probability is "almost" the random one:

$$\mathbb{P}^*(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) \leq 2^{t(\lambda)} \cdot 0.5^n + \operatorname{negl.}(\lambda),$$

where $\lambda \in \mathbb{N}$ is the security parameter, and n is the size of the message m.

Remarks. • t = 0 is ideal.

¹Broadbent and Lord. Uncloneable Quantum Encryption via Oracles. 2020.

Known Results

Open Question Attempt Without Assumption Result in the QROM Model Result with Interactions and Eavesdropping Results Under Other Assumptions

Open Question

• Gottesman² introduced a scheme that detects if an adversary could have had information about the plaintext when it was ecnrypted.

• **Open Question.** Is it possible to find an ecryption scheme that would prevent the splitting of a ciphertext?

²Gottesman. "Uncloneable Encryption". In: *Quantum Info. Comput.* (2003).

Open Question Attempt Without Assumption Result in the QROM Model Result with Interactions and Eavesdropping Results Under Other Assumptions

Attempt Without Assumption

Encryption scheme: \mathcal{A} encrypts her message $m \in \{0, 1\}^n$ in a Wiesner state $|m^k\rangle := H^{k_1}|m_1\rangle \otimes \cdots \otimes H^{k_n}|m_n\rangle$, with a key $k \in \{0, 1\}^n$:

$$\operatorname{Enc}_k(m) := |m^k\rangle\langle m^k|.$$

Decryption scheme: $Dec_k(\rho) := measurement of H^k \rho H^k$ in the computational basis.

Theorem ([Tomamichel – Fehr – Kaniewski – Wehner]³)

Using this Enc_k , no matter what $\mathcal{P}, \mathcal{B}, \mathcal{C}$ do, their winning probability is bounded by: $\mathbb{P}^*(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) = \left(\cos^2(\pi/8)\right)^n \approx 0.85^n$.

³Tomamichel et al. "A monogamy-of-entanglement game with applications to device-independent quantum cryptography". In: *New Journal of Physics* (2013).

Open Question Attempt Without Assumption Result in the QROM Model Result with Interactions and Eavesdropping Results Under Other Assumptions

Result in the Quantum Random Oracle Model

• **Definition.** "A quantum-secure pseudorandom function (qPRF) is a keyed function f_{λ} : $\{0,1\}^{\lambda} \times \{0,1\}^{\ell_{in}(\lambda)} \to \{0,1\}^{\ell_{out}(\lambda)}$, with $\lambda \in \mathbb{N}$, which appears random to an efficient quantum adversary who only sees its input/output behaviour and is ignorant of the particular key being used."

$$\begin{array}{c} \text{Encryption} \\ m \in \{0,1\}^n & \longrightarrow \\ k = (s,\theta) \\ \in \{0,1\}^{2\lambda} \\ \end{array} \xrightarrow{ \left\{ \begin{array}{c} c \\ \end{array} \right\}} e \\ \left\{ \begin{array}{c} c \\ c \\ \end{array} \right\}} e \\ e \\ \left\{ \begin{array}{c} c \\ c \end{array} \right\}} e \\ \left\{ \begin{array}{c} c \\ c \end{array} \right\}} e \\ e \\ \left\{ \begin{array}{c} c \\ c \end{array} \right\}} e \\ \left\{ \begin{array}{c} c \\ c \end{array} \right\}} e \\ e \\ \left\{ \begin{array}{c} c \\ c \end{array} \right\}} e \\ \left\{ \begin{array}{c} c \\ c \end{array} \right\}} e \\ e \\ \left\{ \begin{array}{c} c \\ c \end{array} \right\}} e \\ \left\{ \begin{array}{c} c \\ c \end{array} \right\}} e \\ e \\ \left\{ \begin{array}{c} c \\ c \end{array} \right\}} e \\ \left\{ \begin{array}{c} c \\ c \end{array} \right\}} e \\ e \\ \left\{ \begin{array}{c} c \\ c \end{array} \right\}} e \\ \left\{ \begin{array}{c} c \\ c \end{array} \right\}} e \\ e \\ \left\{ \begin{array}{c} c \\ c \end{array} \right\}} e \\ \left\{ \begin{array}{c} c \\ c \end{array} \right\}} e \\$$

Theorem ([Broadbent – Lord]⁴)

If the qPRF is modeled by a q. oracle, this encryption is $\log_2(9)$ -unlconeable secure: $\mathbb{P}(\mathcal{P}, \mathcal{B}, \mathcal{C} \text{ win}) \leq 9 \times 0.5^n$.

⁴Broadbent and Lord. Uncloneable Quantum Encryption via Oracles. 2020.

Open Question Attempt Without Assumption Result in the QROM Model **Result with Interactions and Eavesdropping** Results Under Other Assumptions

Result with Interactions and Eavesdropping

• Theorem ([Broadbent – Culf]): For quantum encryption schemes of classical messages with interactive decryption, there is an equivalence between uncloneable and uncloneableindistinguishable security.

(Broadbent and Culf. "Uncloneable Cryptographic Primitives with Interaction". In: (2023). arXiv: 2303.00048)

Open Question Attempt Without Assumption Result in the QROM Model Result with Interactions and Eavesdropping Results Under Other Assumptions

Results Under Other Assumptions

- $\bullet\,$ Assumption of post-quantum one-way functions or post-quantum public key encryption. 5
- \bullet Variant where ${\cal A}$ sends different keys to ${\cal B}$ and ${\cal C}.^6$
- Assumption of post-quantum hardness of the learning with errors (LWE) problem.⁷
- Assumption of post-quantum indistinguishability obfuscation, one-way functions, and compute-and-compare obfuscation.⁸

- ⁶Kundu and Tan. Device-independent uncloneable encryption. 2023. arXiv: 2210.01058.
- ⁷Gheorghiu, Metger, and Poremba. *Quantum cryptography with classical communication: parallel remote state preparation for copy-protection, verification, and more.* 2022. arXiv: 2201.13445.
 - ⁸Chevalier, Hermouet, and Vu. Unclonable Cryptography in the Plain Model. 2023.

⁵Ananth and Kaleoglu. "Unclonable Encryption, Revisited". In: 2021.

Our Conjecture

THE SCENARIO KNOWN RESULTS Our Conjecture

(Hidden in the online version.)

Bibliography

- Ananth and Kaleoglu. "Unclonable Encryption, Revisited". In: 2021.
- Ananth et al. "On the Feasibility of Unclonable Encryption, and More". In: 2022.
- **Broadbent and Culf.** "Uncloneable Cryptographic Primitives with Interaction". In: (2023). arXiv: 2303.00048.
- **Broadbent and Lord**. Uncloneable Quantum Encryption via Oracles. 2020. DOI: 10.4230/LIPIcs.TQC.2020.4.
- Chevalier, Hermouet, and Vu. Unclonable Cryptography in the Plain Model. 2023.
- **Gheorghiu**, Metger, and Poremba. *Quantum cryptography with classical communication: parallel remote state preparation for copy-protection, verification, and more.* 2022. arXiv: 2201.13445.
- **Gottesman**. "Uncloneable Encryption". In: *Quantum Info. Comput.* (2003).
- Kundu and Tan. Device-independent uncloneable encryption. 2023. arXiv: 2210.01058.
- Tomamichel et al. "A monogamy-of-entanglement game with applications to device-independent quantum cryptography". In: *New Journal of Physics* (2013). DOI: 10.1088/1367-2630/15/10/103002.