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Motivation

Goal. Combine several theoretical principles to rule out the quantum theory (Q) from
the non-signalling theory (NS).

Here. We will study the principle of no-collapse of communication complexity (CC).
Intuitively, a violation of this principle seems impossible in Nature [2, 3, 4].
Quantum theory satisfies this principle, but some non-signalling correlations violate it.

Open Question. What are all non-signalling correlations that violate this principle?
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2.1. CHSH Game & Nonlocal Boxes

Alice Bob

Referee
yx

Referee

a b
Alice Bob

Win at CHSH ⇐⇒ a ⊕ b = x y .

• Deterministic Strategies.
 max P(win) = 75%.

• Classical Strategies (L).
 max P(win) = 75%.

• Quantum Strategies (Q).
 max P(win) = cos2

(
π
8
)
≈ 85%.

• Non-signalling Strategies (NS).x ′ y ′

a′ b′
NonLocal Box

 max P(win) = 100%.
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2.2. Wiring of Nonlocal Boxes
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P

Q
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f1(x , a2)

a1

f2(x , a1)

a2

f3(x , a1, a2)

y

g1(y , b2)

b1
g2(y , b1)

b2

g3(y , b1, b2)

Definition. A wiring W
between two boxes P, Q ∈ NS
consists in six functions
f1, f2, g1, g2 : {0, 1}2 → [0, 1]
and f3, g3 : {0, 1}3 → [0, 1]
satisfying the non-cyclicity
conditions for all x , y :

f1(x , 0) 6= f1(x , 1)⇒ f2(x , 0) = f2(x , 1),
f2(x , 0) 6= f2(x , 1)⇒ f1(x , 0) = f1(x , 1),

and similarly for g1, g2. The
new box is denoted
P�W Q ∈ NS.
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Examples of Wirings in the Litterature
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Wdepth3 [6]
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x

x

a1
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a2
(?)
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(???)

y

y

b1
y

b2
(??)

b3

(????)

where the overline bar is the NOT gate: x = x ⊕ 1, the symbol (?) stands for xa2 ∨ xa1 ∨ xa2a1, and
(??) for yb2 ∨ yb1, and (???) for a3a2 ∨ a3a1 ∨ a3a2a1, and (????) for b3b2 ∨ b3b1 ∨ b3b2b1.
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2.3. Collapse of Communication Complexity

Alice Bob

Referee

f :{0, 1}n×{0, 1}n→{0, 1}

ff
Referee

X ∈ {0, 1}n Y ∈ {0, 1}n

aAlice

Win ⇐⇒ a = f (X ,Y ).

Nonlocal box

Only one bit b

Bob

Def. A function f is said to be trivial (in the
sense of communication complexity) if Alice knows
any value f (X ,Y ) with only one bit transmitted
between Alice and Bob.

Ex. For n = 2, X = (x1, x2), Y = (y1, y2):
• f := x1 ⊕ y1 ⊕ x2 ⊕ y2 ⊕ 1 is trivial.
• g := (x1 x2)⊕ (y1 y2) is trivial.
• h := (x1 y1)⊕ (x2 y2) is NOT trivial.

Def. A box P is said to be collapsing (or trivial)
if using copies of this box P any Boolean function
f is trivial, with probability ≥ q > 1

2 for some q
independent of n, f ,X ,Y .

Ex. • The famous PR box is collapsing [2].
• Local (L) and quantum (Q) boxes are NOT col-
lapsing [7].
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3.1. Algebra of Boxes
Fact. Given a wiring W, the new box P�W Q is bilinear in the boxes (P, Q).
So BW :=

(
{boxes},�W

)
is an algebra, that we call the algebra of boxes.

Proposition (Characterization of commutativity and associativity)
Assume W is a wiring such that f1 = f2 = f (x) and g1 = g2 = g(y). Then:
1 BW is commutative ⇐⇒ f3(x , a1, a2) = f3(x , a2, a1) and

g3(y , b1, b2) = g3(y , b2, b1).
If in addition f (x) = x and g(y) = y :
2 BW is associative ⇐⇒ f3(x , a1, f3(x , a2, a3)) = f3(x , f3(x , a1, a2), a3) and

g3(y , b1, g3(y , b2, b3)) = g3(y , g3(y , b1, b2), b3).
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3.2. Orbit of a Box
Orbit(3)(P) =

{
(P� P)� P, P� (P� P)

}
,

Orbit(4)(P) =
{(

(P�P)�P
)
�P,

(
P�(P�P)

)
�P,

(P�P)�(P�P), P�
(

(P�P)�P
)
, P�

(
P�(P�P)

)}
,

Orbit(k)
W (P) :=

{
all possible products with k

times the term P, using the multiplication �W
}
.

Proposition. For fixed k, the points of the
orbit are aligned, and the highest CHSH-value
is achieved by the parenthesization with only
multiplication on the right:

P�k :=
((

(P� P)� P
)
· · ·
)
� P .
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Here is the consequence to Communication Complexity:

(a)

NS

L

P
Orbit(P)

If ∃ Q ∈
Orbit(P) that
is collapsing,
then P is also
collapsing.

(b)

NS

L

P

CP ∩NS

If P is collaps-
ing, then any
box in CP ∩ NS
is also collaps-
ing.

(c)

NS

L

P
Orbit(P)

C = Conv
(
L∪⋃

W OrbitW(P)
)

If ∃ Q ∈ C
that is collaps-
ing, then P is
also collapsing.
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3.3. Numerical Results
Using a gradient descent algorithm, we obtain in orange new collapsing boxes (this
result is similar to the independent and concurrent work of [6]):
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3.4. Analytical Results
Based on the algebra of boxes and fixed-point theorems, we recover from [8] the
following collapsing triangles of nonlocal boxes, with their respective wiring:
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T4

PR

P0010L

P1110L
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Q
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y

y
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P

Q

x
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x
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a1 ⊕ a2

y
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P

Q

x
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a1

x
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y
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b1
y
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W3

P

Q

x

x ∧ a2

a1

x
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y
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b1
y

b2
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P

Q

x

a2

a1

x
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a1⊕x∧(a1⊕a2)

y

y ∧ b2

b1
y
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Our Other Related Results
B.–Broadbent–Proulx, PRL:132 (7 2024) [9].
We find that boxes above a certain ellipse
collapse CC, using bias amplification by
majority function:

σ

σ′

−1

−1

1

1

PR

PR′

PR

PR′ I
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1

PR

SR

PR
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I

B.–Weber, arXiv:2406.02199 [10] (online yesterday!)
We show that certain correlations for the
graph isomorphism game, the graph coloring
game, and the vertex distance game collapse
CC:

A2 B2

H1

H2

hBhA

a= i−1 s.t. hA∈Hi b = j−1 s.t. hB ∈Hj
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