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— Part 1 —

Motivation



1. MOTIVATION

Motivation

Goal. Combine several theoretical principles to rule out the quantum theory (Q) from
the non-signalling theory (NS).

Here. We will study the principle of no-collapse of communication complexity (CC).
Intuitively, a violation of this principle seems impossible in Nature [2, 3, 4].

Quantum theory satisfies this principle, but some non-signalling correlations violate it.

Open Question. What are all non-signalling correlations that violate this principle?
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— Part 2—

Setup



. CHSH Game & Nonlocal Boxes
iring of Nonlocal Boxes

3. Collapse of Communication Complexity

2.1. CHSH Game & Nonlocal Boxes

Y
¢ Deterministic Strategies.

~» max P(win) = 75%.

o Classical Strategies (£).
~» max P(win) = 75%.

B
m a b ob o Quantum Strategies (Q).

~» max P(win) = cos? (§) ~ 85%.
M y/ e Non-signalling Strategies (NS).
\ ( ~» max P(win) = 100%.

I NonLocal Box I

a 4/ \)b’ S

Win at CHSH <— a@ b= xy.
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2.1. CHSH Game & Nonlocal Boxes
2.2 iring of Nonlocal Boxes

2.3. Collapse of Communication Complexity

2.2. Wiring of Nonlocal Boxes

x w (‘ Y x w f y Definition. A wiring W
between two boxes P,Q € NS

consists in six functions

flv f27g17g2 : {07 1}2 - [07 1]

and f3,g3 : {0,1}® — [0,1]

satisfying the non-cyclicity

conditions for all x, y:

fi(x,0) # fi(x,1) = f(x,0) = f(x,1),
f2(X70) 7é f—2(X’1) = fl(XﬂO) = fl(X7 1)a

and similarly for g1, g>. The
v \/ v v new box is denoted
a=a b=b &(X731»32) gS(%bl»bZ) PgWQ GNS

Reference: arxiv:2312.00725 (Quantum, 2024) Pierre Botteron



2.1. CHSH Game & Nonlocal Boxes
2. SETUP 2.2. Wiring of Nonlocal Boxes

2.3. Collapse of Communication Complexity

Examples of Wirings in the Litterature

N e Y we Y e Y Wel Y Wl (T

X Y
— | P | 2 g E b
X y
a by

— ® (o)

Q

a 5 -l by a g E by
v Y v v v v v v

X y a by a @ a by ® by aday by @ by (xx) (xxx)

where the overline bar is the NOT gate: X = x @ 1, the symbol (%) stands for xa, V xar V Xaza1, and
(%%) for yba V yby, and (x%+) for asa» V asar V @azar, and (sxxk) for bsby V bsby V b3baby.
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Game & Nonlocal Boxes
g of Nonlocal Boxes

. Colla[;se of Communication Complexity

2.3. Collapse of Communication Complexity

£:40,1}" x {0,1}" — {0, 1}

f f Def. A function f is said to be trivial (in the
sense of communication complexity) if Alice knows
any value f(X,Y) with only one bit transmitted

between Alice and Bob.

X e {o0,1}" Y €{0,1}"

Ex. For n=2, X = (x1,x), Y = (y1, y2):
of = x1Dy1 Dxo®yr®1is trivial.

o g = (x1x2) ® (y1y2) is trivial.

o h = (x1y1) ® (x2 y2) is NOT trivial.

o
[v2]
(=]
(=2

Ve

I Nonlocal box I

< S

A e e e e L L T T TR

Only one bit b

Def. A box P is said to be collapsing (or trivial)
if using copies of this box P any Boolean function
f is trivial, with probability > q > % for some q
independent of n, f X, Y.

——eee>
/

Neecacacaaaoe

Ex. e The famous PR box is collapsing [2].
e Local (£) and quantum (Q) boxes are NOT col-

Win < a= f(X,Y). lapsing [7].
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— Part 3—

Results



3.1. Algebra of Boxes

Orbit

3. REsuLTS

3.1. Algebra of Boxes

Fact. Given a wiring W, the new box P Xy Q is bilinear in the boxes (P, Q).
So Bw := ({boxes},K\y) is an algebra, that we call the algebra of boxes.

Proposition (Characterization of commutativity and associativity)

Assume W is a wiring such that i = f, = f(x) and g1 = g = g(y). Then:

Q@ DB is commutative <= f3(x, a1, a2) = f3(x, a2, a1) and
g3(y, b1, b2) = gs(y, b2, b1).

If in addition f(x) = x and g(y) = y:

@ DBy is associative < f3(x, a1, f3(x, a2, a3)) = f3(x, 3(x, a1, a2), a3) and
83y, b1, 83(y; b2, b3)) = g3(y, &3(y, b1, b2), bs).
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3.1. Algebra of Boxes
3.2. Orbit of a Box

3. REsuLTS

3.3. Numerical Results

3.4. Analytical Results

3.2. Orbit of a Box

orbit®(P) = {(PXP)XP, PR (PXP)},

1.001

orbit(*(P) = {((Pmp)mP)xp, (PH(PHP))KP,

(PXP)X(PXP), PX ((PRP)XP), PR (PR (PXP)) }, 0951
Orbit(k)(P) = { all possible products with k éo.eo-
w : P P o
times the term P, using the multiplication X } < 055
= 0. 1
T

Proposition. For fixed k, the points of the

orbit are aligned, and the highest CHSH-value 0801

is achieved by the parenthesization with only
multiplication on the right:

prk = (((P&P)&P)m) XP.
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Orbit of a box P until depth k=12 (wiring W = Wpgs)

0.75

PR

Il Collapsing A3-boxes from [BBLMTUO06].

B Other AS-boxes.
Quantum boxes.
® Orbit of depth k=1.
® Orbit of depth k=6.

Orbit of depth k=12.
O Boxes studied in [BS09].

R
N , _
\ ‘..o © « orbit of depth k=2
‘s
% © & starting box P
(1+PR)/2 SR
0.50 0.55 0.60 0.65 0.70 0.75

P(win at CHSH')




Algebra of Boxes
. Orbit of a Box

3. Numerical Results

3. REsuLTS = ;
4. Analytical Results

Here is the consequence to Communication Complexity:

If  3Q e If P is collaps-

(a) Orbit(P) that (b) ing, then any (c) If E.Q € ¢
. - . that is collaps-
is collapsing, box in Cp N NS ine. then P is
then P is also is also collaps- & )
collapsing. ing. also collapsing.

» Orbit(P) » Orbit(P)

C =Conv (L
Ub Orbityy(P))
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3.1. Algebra of
3.2. Orbit of a

3.3. Numerical Results
3.4. Analytical Results

3. REsuLTS

3.3. Numerical Results

Using a gradient descent algorithm, we obtain in orange new collapsing boxes (this
result is similar to the independent and concurrent work of [6]):

Collapsing Boxes (Keset=10, x=0.1, m=103, M=20, N=10).

Collapsing Boxes (Kreset=10, x=0.1, m=102, M=20, N=10).
1.00{ PR - Collapsing A5-boxes 1001 PR - Collapsing N5-boxes
from [BBLMTU06]. from [BBLMTUO06].
° Collapsing N5-boxes ° Collapsing N5-boxes
from [BS09]. from [BS09].
0951 mm Collapsing AG-boxes 0.95 1 mm COllapsing AS-boxes
from [BBP23]. from [BBP23].
— ° Collapsing N5-boxes = ° Collapsing N5-boxes
5 0.90 using Algorithm 4. ﬁ 0.90 4 using Algorithm 4.
5 W Other N3-boxes. 5 I Other As-boxes.
® Quantum boxes. < Quantum boxes.
< c
3 0.85 1 2 0.85
Y S
0.80 1 0.80 1
073 _(PR42 . . . sR| 0751 (PR+PEO2. i i i P
0.50 0.55 0.60 0.65 0.70 0.75 0.50 0.55 0.60 0.65 0.70 0.75
P(win at CHSH')

P(win at CHSH')
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3.1. Algebra of Box
3.2. Orbit of a Box

3.3. Numerical Results
3.4. Analytical Results

3.4. Analytical Results

Based on the algebra of boxes and fixed-point theorems, we recover from [8] the
following collapsing triangles of nonlocal boxes, with their respective wiring:

3. REsuLTS

1011 1110
po1Ll P P!

PR

v ¥ v V

a=aSa b= b &b A D a y& b gb XAa @ a by @ by a@xANa bayAbi@b) aoxA(ada) ydb @b
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Our Other Related Results

B.—Broadbent—Proulx, PRL:132 (7 2024) [9]. B.—Weber, arXiv:2406.02199 [10] (online yesterday!)

We find that boxes above a certain ellipse We show that certain correlations for the

collapse CC, using bias amplification by graph isomorphism game, the graph coloring

majority function: game, and the vertex distance game collapse
CcC:

ha hg

Ay B,

! !

a=i—1 st. hacH; b=j—1 st. hgeH;
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