NON LOCAL BOXES & COMMUNICATION COMPLEXITY

Pierre BOTTERON, Institute of Mathematics in Toulouse (France)

FOXCONN Quantum Computing Research Center (Taipei, Taiwan)

(June 21st, 2024)

Three articles: 1 ar Xiv: 2302.00488 (PRL) with A. Broadbent, M.O. Proulx
2 ar Xiv: 2312.00725 (Quantum) with A. Broadbent, R. Chhaibi, I. Ne chita,
C. fellegrini

3 arxiv: 2406.02199 with M. Weber.

[I] Motivation

Sol: Combine several principles to rule out the set of quantum comelation (a) from the set of Non-signalling correlations (NS).

Here: "Communication Complexity = (CC)

-> A collapse of CC seems "impossible"

in Nature

-> No quantum correlation can imply

a collapse of CC, but imply a collapse. Some Mon-Sign.

(A) Question: What are all the correlations that collapse cc? Mon - Signelling

II Background

1 CHSH game x€[0,1] Referre M∈ [0,1] Alice a E Soil Bob

A&B win \ a\b= xy

@ Deterministic Strot. max P(win) = 75%

@ Classical Stret. max P(win) = 75%

Max P(win) = Cos2(TT/8) Max $\mathbb{N}(\omega u) = \omega_{1}(\omega)$ Nonlocal Box $\mathbb{E}_{A,B} = \mathbb{E}_{A,B} = \mathbb$

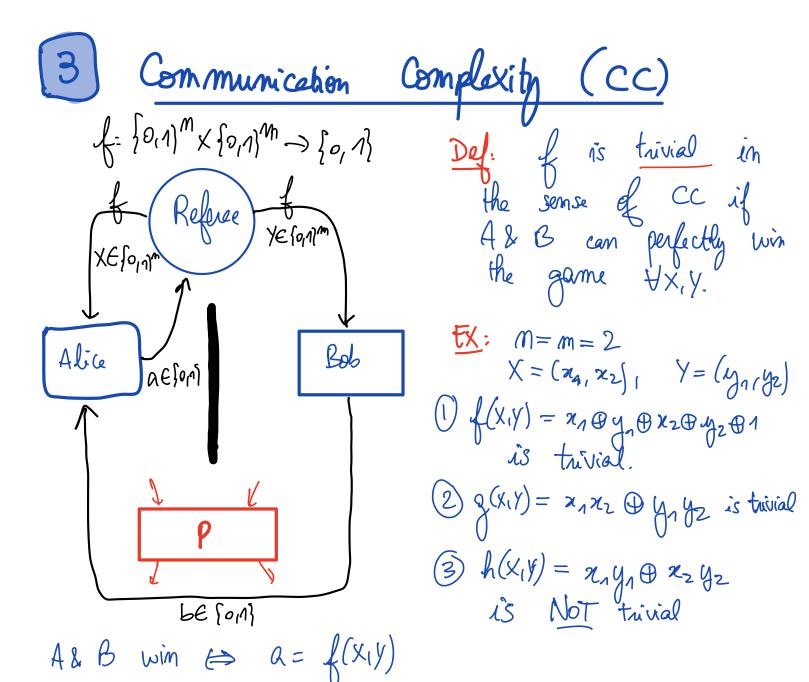
max P(win) = 100 %

Examples of NLBs

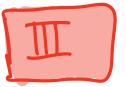
1 Local Boxes:

2) Quantum Box

• SR
$$(A,B|X,Y) = \frac{1}{2} \delta_{A=B}$$


$$|\phi^{+}\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

$$\{E_{A|X}\}, \{F_{B|Y}\} POVM$$

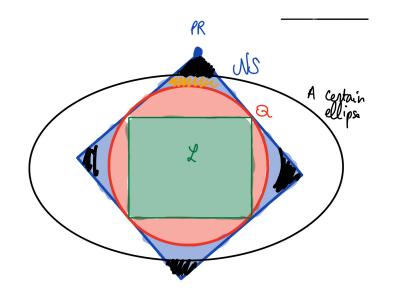

$$P(A,B|X|Y) = \langle \phi^{+}|E_{A|X} \circ E_{B|Y}| \phi^{+}\rangle$$

Non-Signalling Box: (marmed after Pospescu, Ronhlich)

$$PR(A_1B_1 \times I) = \frac{1}{2} \delta_{ABB=XY}$$

Def:	The 3 p> trivial	NLB 1/2 st wif	P in every for he proba	: {0,1}	ollapsing M X {0117	CC (n)
						impossible
Ex: .	PR	is	Collapsin	Ĵ		≥F (0+)) C.
	0					

Kesults



Result 1

ar Xiv: 2302.00488 (PRL) with A-Broadbent, M.O. Proulx

Thm: Every NLB that is in Well is allepsing cc.

Sketch: $f: \{0,11^m \times \{0,11^m \rightarrow \{0,1\}^m \times \{0,11^m \rightarrow \{0,1\}^m \times \{0,11\}^m \} \}$

(1) Find a protocol $P_{o}(f)$ that wins at guess $a, b \in \{0,1\}$ st. $a \in b = f(X,Y)$ with no Communication, with prob. $p_{o}(f) > \frac{1}{2}$. [Brassard, Buhrman, et al, PRL 96, 250 400 6006]

Repeat 9o(f) three times

Appear 9o(f) three times

No get three guesses for f(x,y): $a_1 \oplus b_1$ $a_2 \oplus b_2$, $a_3 \oplus b_3$ The compute the Mayority function

of the three results: it outputs the Most -appearing Lift in the imputs: $(0,1,1) \mapsto 1$ $(0,0,0) \mapsto 0$ $(0,0,1) \mapsto 0$

Los We need to use two copies of the NLB P.E. The

This defines a protocol $P_n(f)$ that wins at guessing $a,b \in \{e,n\}$ St. $A \oplus b = f(x,y)$ with prob. $p_n(f) > p_n(f)$ 8 with no communication.

3) He, define $P_{Rin}(f)$ from $P_{Rin}(f)$. St. $P_{Rin}(f) > P_{Rin}(f) > \dots > P_{n}(f) > P_{n}(f) > \frac{1}{2}$ with no communication.

We prove that $p_{\mathcal{B}}(\beta) \xrightarrow{\mathbb{R} \to +\infty} p_{\mathcal{K}} > \frac{1}{2}$ (using a fixed - point Thin) $p_{\mathcal{K}} > \frac{1}{2}$ $p_{\mathcal{K}} > \frac{1}{2}$ $p_{\mathcal{K}} > \frac{1}{2}$

Hence:
$$\exists p := \frac{p_{+} + \frac{1}{2}}{2} \sum_{i=1}^{1} \forall f_{i}, \exists k, p_{k}(f) > p_{i}$$

independent of $f_{i} \times i \neq i$

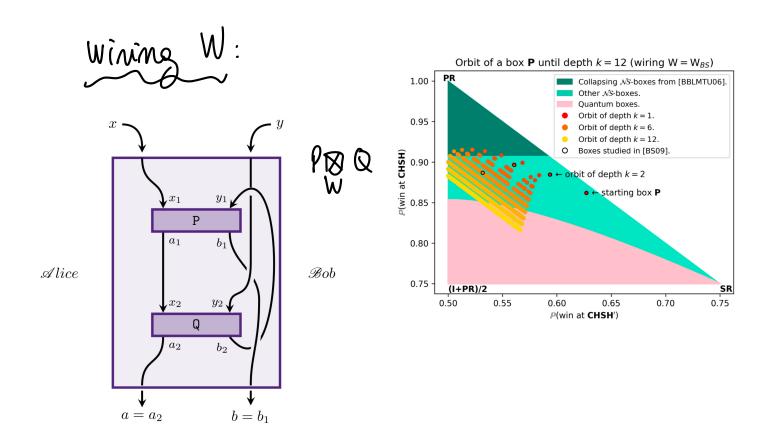
Now, in
$$P_{k}(\beta)$$
, Alice & Bob produce $a,b \in [o,1)$ St $a \oplus b = g(x,Y)$ with prob. $p_{k}(\beta) > p$

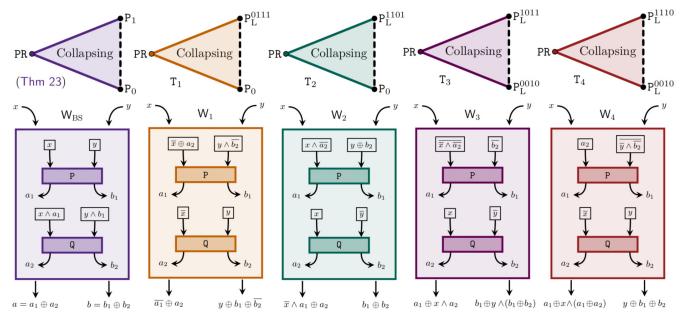
$$\Rightarrow \quad \text{Bob can send } b \in \{o,1\} \text{ fo Alice, } x \text{ Alice knows } f(x,y)$$

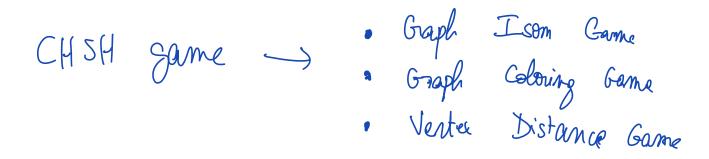
$$\forall v, p, \quad p_{k}(\beta) > p.$$

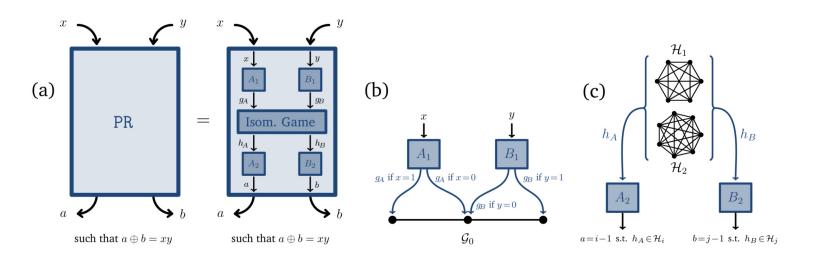
$$\Rightarrow \quad \text{Collapse of } CC.$$

2 Result 2


arxiv: 2312.00725 (Quantum) with A. Broadbont, R. Chhaibi, I. Ne chita, C. Pellegrini







arxiv: 2406.02199

with M. Weber.

Thank you for your attention!!