Graph Games & **the Collapse of Communication Complexity**

Reference: arXiv:2406.02199 [\[1\]](#page-18-0).

Pierre Botteron (Toulouse & Ottawa) and

Moritz Weber (Saarbrücken)

Ottawa, Friday, September 13th, 2024

Motivation

Goal

Have an information-based description of quantum correlations (Q) .

Idea

- **Take a larger set than Q: the non-signalling correlations (** \mathcal{NS} **).**
- **Consider an information-based principle: Communication Complexity (CC).**
- **Prove that post-quantum correlations (** $\mathcal{NS}\backslash\mathcal{Q}$ **) violate this principle.**

Open Question

What are all non-signalling correlations that violate the principle of CC?

Background

1.1. CHSH Game & **Nonlocal Boxes**

Win at CHSH \iff $a \oplus b = x y$.

- **Deterministic Strategies.** \rightsquigarrow max $\mathbb{P}(\text{win}) = 75\%$.
- **Classical Strategies (**L**).** \rightsquigarrow max $\mathbb{P}(\text{win}) = 75\%$.
- **Quantum Strategies (**Q**).** \rightsquigarrow max $\mathbb{P}(\text{win}) = \cos^2\left(\frac{\pi}{8}\right) \approx 85\%.$
- \rightsquigarrow max $\mathbb{P}(\text{win}) = 100\%.$

1.2. Collapse of Communication Complexity

$$
Win \Longleftrightarrow a = f(X, Y).
$$

Def. A function f is said to be **trivial** (in the sense of communication complexity) if Alice knows any value $f(X, Y)$ with only one bit transmitted from Bob to Alice.

Ex. For $n = 2$, $X = (x_1, x_2)$, $Y = (y_1, y_2)$:

•
$$
f := x_1 \oplus y_1 \oplus x_2 \oplus y_2 \oplus 1
$$
 is trivial.

- $g := (x_1 x_2) \oplus (y_1 y_2)$ is trivial.
- $h := (x_1 y_1) \oplus (x_2 y_2)$ is NOT trivial.

Def. A box P is said to be **collapsing** (or trivial) if using copies of this box P any Boolean function f is trivial, with probability $\geqslant q > \frac{1}{2}$ for some q independent of n, f, X, Y .

Ex. • The famous PR box is collapsing. • Local (\mathcal{L}) and quantum (\mathcal{Q}) boxes are NOT collapsing.

Graph Isomorphism Game

2.1. Definition of the Graph Isomorphism Game

Alice and Bob receive a vertex from a graph G :

$$
\text{Alice} \xleftarrow{\text{g}} \qquad \qquad \qquad \text{C} \qquad \qquad \text{Bob}
$$

and they answer a vertex from a graph H :

They win the game if and only if:

•
$$
g_A = g_B \Rightarrow h_A = h_B;
$$

•
$$
g_A \sim g_B \Rightarrow h_A \sim h_B;
$$

•
$$
g_A \neq g_B \Rightarrow h_A \neq h_B
$$
.

Claim We can use a perfect strategy for this game to generate a PR box.

Proof. Let $x, y \in \{0, 1\}$. We want to generate $a, b \in \{0, 1\}$ such that $a \oplus b = x y$.

2.2. Application of Graph Isomorphism to CC

Theorem

Let G and H be two graphs such that diam(G) \geqslant 2, and that H admits exactly two connected components \mathcal{H}_1 and \mathcal{H}_2 , which are both complete. Then any perfect strategy S for the graph isomorphism game $\mathcal{G} \cong_{ns} \mathcal{H}$ collapses communication complexity.

(Other results are available in the manuscript.)

Graph Coloring Game

3.1. Definition of the Graph Coloring Game

Alice and Bob receive a vertex from a graph G :

$$
\text{Alice} \xleftarrow{\text{g}} \qquad \qquad \text{G} \qquad \qquad \text{Bob}
$$

and they answer a color of their choice:

They win the game if and only if:

- $g_A = g_B \Rightarrow h_A = h_B$;
- $g_A \sim g_B \Rightarrow h_A \neq h_B$.

Proof. Let $x, y \in \{0, 1\}$. We want to generate $a, b \in \{0, 1\}$ such that $a \oplus b = x y$.

3.2. Application of Graph Coloring to CC

Theorem

Let G and H be such that diam(G) ≥ 2 , and that H admits exactly N connected components H_1, \ldots, H_N , all being complete. Then, given any strategy S winning the graph isomorphism game $\mathcal{G} \cong_{\text{ns}} \mathcal{H}$ with probability p, combined with an NS-strategy winning the 2-coloring game of K_N with probability q such that $pq > \frac{3+\sqrt{6}}{6} \approx 0.91$, there is a collapse of communication complexity.

(Other results are available in the manuscript.)

Vertex Distance Game

4.1. Definition of the Vertex Distance Game

Alice and Bob receive a vertex from a graph \mathcal{G} :

and they answer a vertex from a graph H :

They win the game if and only if:

$$
d(h_A, h_B) = \left\{ \begin{array}{cl} d(g_A, g_B) & \text{if } d(g_A, g_B) \leq D \\ > D & \text{otherwise.} \end{array} \right.
$$

If they win for all g_A,g_B , we denote $\mathcal{G} \cong^D \mathcal{H}$.

$$
\cdots \Rightarrow \mathcal{G} \cong^{D=2} \mathcal{H} \Rightarrow \mathcal{G} \cong^{D=1} \mathcal{H} \Rightarrow \mathcal{G} \cong^{D=0} \mathcal{H}.
$$

$$
d(h_A, h_B) = \begin{cases} d(g_A, g_B) & \text{if } d(g_A, g_B) \\ \infty & \text{otherwise.} \end{cases}
$$

Rmk: If
$$
\mathcal{G} \cong^D \mathcal{H}
$$
, then $|V(\mathcal{G})| = |V(\mathcal{H})|$.

4.2. Classical and Quantum Strategies

Perfect classical (resp. quantum) strategies for the graph isomorphism game ($D = 1$) and for the vertex distance game ($D \ge 2$) coincide:

4.3. Non-Signalling Strategies

Def. $G \cong_{\text{frac}} \mathcal{H} \iff \exists P \text{ bistochastic}$ s.t. $A_G P = P A_H$, where A_G is the adjacency matrix, with coefficient 1 for adjacent vertices, and coefficient 0 otherwise.

Def. $G \cong_{\text{freq}}^D \mathcal{H} \iff \exists P \text{ bistochastic s.t.}$ $A_{\mathcal{G}}^{(t)}P = P\!A_{\mathcal{H}}^{(t)}$ for all $t\leqslant D$, where $A_{\mathcal{G}}^{(t)}$ $\mathcal{G}^{\left(\nu \right)}$ is the matrix with coefficient 1 for vertices at distance t, and coefficient 0 otherwise.

Theorem (Atserias et.al. [\[2\]](#page-18-1), Ramana et.al. [\[3\]](#page-18-2)) The following are equivalent: \Box $G \cong_{\sf ns} \mathcal{H}$. $G \cong_{\text{free}} H$. (G, H) admits a common equitable partition. **Theorem (**Non-Signalling Strategies**)** Let $D \ge 0$. The following are equivalent: ■ $\mathcal{G} \cong_{ns}^D \mathcal{H}.$ ■ $\mathcal{G} \cong_{\text{frac}}^D \mathcal{H}.$ (G, H) admits a D-common equitable partition.

1. BACKGROUND 2. GRAPH ISOMORPHISM GAME 3. GRAPH COLORING GAME 4. VERTEX DISTANCE GAME 000

 000000000

4.4. Strict Implications

As opposed to classical and quantum strategies, perfect $\overline{\mathcal{NS}}$ strategies do not coincide between the isomorphism game ($D = 1$) and the distance game ($D \ge 2$), and more generally:

4.5. Application of Vertex Distance to CC

Theorem

If diam(G) > diam(H) $\geqslant D \geqslant 1$ and if H admits exactly two connected components, then any perfect $\mathcal{N}S$ -strategy for the D-distance game collapses communication complexity.

Theorem

If diam(G) $>$ diam(H) \geqslant D \geqslant 1 and if H admits exactly N connected components, then any $\mathcal{N}S$ -strategy winning the D-distance game with probability p, combined with an MS-strategy winning the 2-coloring game of K_N with probability q, such that $pq < \frac{3+\sqrt{6}}{6}$, $\frac{1}{6}$ collapses communication complexity.

(Other results are available in the manuscript.)

Our Other Related Results

B.–Broadbent–Proulx, PRL:132 (7 2024) [\[4\]](#page-18-3). We find that boxes above a certain ellipse collapse CC, using bias amplification by majority function:

B.–Broadbent–Chhaibi–Nechita–Pellegrini, Quantum 8, 1402 (2024) [\[5\]](#page-18-4). We study wirings between nonlocal boxes and use them to find boxes that collapse CC:

Bibliography

- [1] P. Botteron and M. Weber, "Communication complexity of graph isomorphism, coloring, and distance games," 2024.
- [2] A. Atserias, L. Mancinska, D. E. Roberson, R. Samal, S. Severini, and A. Varvitsiotis, "Quantum and non-signalling graph isomorphisms," Journal of Combinatorial Theory, Series B, vol. 136, pp. 289–328, 2019.
- [3] M. V. Ramana, E. R. Scheinerman, and D. Ullman, "Fractional isomorphism of graphs," 1994.
- [4] P. Botteron, A. Broadbent, and M.-O. Proulx, "Extending the known region of nonlocal boxes that collapse communication complexity," Phys. Rev. Lett., vol. 132, p. 070201, Feb 2024.
- [5] P. Botteron, A. Broadbent, R. Chhaibi, I. Nechita, and C. Pellegrini, "Algebra of Nonlocal Boxes and the Collapse of Communication Complexity," Quantum, vol. 8, p. 1402, July 2024.
- [6] P. J. Cameron, A. Montanaro, M. W. Newman, S. Severini, and A. Winter, "On the quantum chromatic number of a graph," 2006.
- [7] M. Lupini, L. Mancinska, and D. E. Roberson, "Nonlocal games and quantum permutation groups," Journal of Functional Analysis, vol. 279, no. 5, p. 108592, 2020.
- [8] L. Lovász, "Operations with structures," 1967.
- [9] S. Chaudhuri and M. Y. Vardi, "Optimization of real conjunctive queries," 1993.
- [10] L. Mancinska and D. E. Roberson, "Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs," 2020.
- [11] G. Brassard, H. Buhrman, N. Linden, A. A. Méthot, A. Tapp, and F. Unger, "Limit on nonlocality in any world in which communication complexity is not trivial," Phys. Rev. Lett., vol. 96, p. 250401, 06 2006.