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—Part 1—

The Unclonable Bit Problem
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Cloning Game
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(Images generated by AI: Hotpot)

• Rule: The malicious team (P,B,C) wins
iff. mB = mC = m.
• Def (Unclonable-Indistinguishable
Security): The encryption scheme
(m, k) 7→ ρm,k is said weakly secure if:

P
(

(P,B,C) win
)

6
1
2 + f (λ) ,

where lim f (λ) = 0, and where λ is the
security parameter. It is strongly secure if
f (λ) = negl(λ).
• Unclonable Bit Problem
[Broadbent–Lord’20]: Is there an
encryption scheme (m, k) 7→ ρm,k that is
both correct and strongly secure?
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1. Unclonable Bit Problem 2. Candidate Scheme 3. Security of the Candidate Scheme

Preliminary Upper Bouds
The winning probability at the no-cloning game is expressed as follows:

P
(

(P,B,C) win
)

= sup
Φ

{Bi|k},{Cj|k}

E
m∈{0,1}

k←Gen(1λ)

∑
mB,mC∈{0,1}

1{mB=mC=m} Tr
[
Φ(ρm,k)

(
BmB|k ⊗ CmC|k

)]
= sup

Φ,{Bi|k},{Cj|k}
E

m,k
Tr
[
Φ(ρm,k)

(
Bm|k ⊗ Cm|k

)]
.

Using the Choi matrix CΦ of the quantum channel Φ, we can rephrase it as follows:

P
(

(P,B,C) win
)

= sup
CΦ,{Bi|k},{Cj|k}

E
m,k

Tr
[
CΦ
(
ρ>m,k ⊗ Bm|k ⊗ Cm|k

)]
,

over all CΦ < 0 such that Tr(B,C)[CΦ] = Id . Relax it into Tr[CΦ] = d , and consider σ := 1
d CΦ:

P
(

(P,B,C) win
)

6 sup
σ,{Bi|k},{Cj|k}

E
m,k

Tr
[
σ
(
d · ρ>m,k ⊗ Bm|k ⊗ Cm|k

)]
,

over all σ < 0 such that Tr[σ] = 1.
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Recall: P
(

(P,B,C) win
)

6 supσ,{Bi|k},{Cj|k} Em,k Tr
[
σ
(
d · ρ>m,k ⊗ Bm|k ⊗ Cm|k

)]
.

By linearity in σ and convexity of the set of quantum states, we may assume σ = |ψ〉〈ψ|:

P
(

(P,B,C) win
)

6 sup
ψ,{Bi|k},{Cj|k}

〈ψ| E
m,k

[
d · ρ>m,k ⊗ Bm|k ⊗ Cm|k

]
|ψ〉 6 sup

{Bi|k},{Cj|k}

∥∥∥∥ E
m,k

[
d · ρ>m,k ⊗ Bm|k ⊗ Cm|k

]∥∥∥∥
op
.

By Naimark’s Dilation theorem, we may assume that the POVMs {Bi|k}i and {Cj|k}j are PVMs.
Moreover, the adversaries Bob and Charlie can always be symmetrized: same space(
HB,HC

)
7→ HB ⊕HC and same PVMs

(
{Bi|k}i , {Cj|k}j

)
7→ {Bi|k ⊕ Ci|k}i =: {Mi|k}i . Hence:

P
(

(P,B,C) win
)

6 sup
{Mi|k}

∥∥∥∥ E
m,k

[
d · ρ>m,k ⊗Mm|k ⊗Mm|k

]∥∥∥∥
op
.

Finally, by writing Uk := M0|k −M1|k , we have Mm|k = ID +(91)m Uk
2 and therefore:

P
(

(P,B,C) win
)

6 sup
{Uk}

1
2K

∥∥∥∥∥∑
m,k

d · ρ>m,k ⊗
ID + (91)mUk

2 ⊗ ID + (91)mUk

2

∥∥∥∥∥
op

,

over all Uk Hermitian unitaries.
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Candidate Scheme
Let k ∈ {1, ..,K}. We construct a family {Γ1, . . . , ΓK} of Hermitian unitaries that
pairwise anti-commute. If K even, consider:

Γj := X⊗(j−1) ⊗ Y ⊗ I⊗( K
2 −j) and Γ K

2 +j := X⊗(j−1) ⊗ Z ⊗ I⊗( K
2 −j) ,

for any j ∈ {1, .., K
2 }. If K odd, add X⊗ K−1

2 .

Candidate Scheme

For m ∈ {0, 1} and k ∈
{1, ..,K}, consider:

ρm,k := 2
d

Id + (−1)m Γk
2 .

Observation

This scheme is correct.

Proof. Given k and ρm,k , measure ρm,k in
an eigenbasis of Γk . Obtain 1 or −1, and
recover the value of m.
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Further Upper Bounds
We plug the formula ρm,k := 2

d
Id +(−1)m Γk

2 into the former upper bound:

P
(

(P,B,C) win
)

6 sup
{Uk}

1
2K

∥∥∥∥∥∑
m,k

d · 2d
Id + (−1)m Γk

2 ⊗ ID + (91)mUk
2 ⊗ ID + (91)mUk

2

∥∥∥∥∥
op

.

over all Uk Hermitian unitaries. We develop and we get:

P
(

(P,B,C) win
)

6
1
4 + 1

4K sup
{Uk}

∥∥∥∥∥
K∑

k=1

(
Γk ⊗ Uk ⊗ ID + Γk ⊗ ID ⊗ Uk + Id ⊗ Uk ⊗ Uk

)
︸ ︷︷ ︸

=:WK (U1,..,UK )

∥∥∥∥∥
op

.

Remark. With a naive triangular inequality, we obtain the following trivial upper bound:

P
(

(P,B,C) win
)

6
1
4 + 1

4K · 3K = 1 .
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Sufficient Condition for the Weak Security
Recall WK (U1, ..,UK ) :=

∑K
k=1

(
Γk ⊗ Uk ⊗ I + Γk ⊗ I⊗ Uk + I⊗ Uk ⊗ Uk

)
.

Theorem 1

If for all Hermitian unitaries U1, ..,UK :∥∥∥WK (U1, ..,UK )
∥∥∥

op
6 K + 2

√
K , (1)

then, the scheme defined by the Γk ’s is weakly secure:

P
(

(P,B,C) win the game
)

6
1
2 + 1

2
√

K
.
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Now, we want to prove:
Conjecture

Let K > 2 be an integer, Γ1, .., ΓK Hermitian unitaries that pairwise anti-commute,
and U1, ..,UK Hermitian unitaries. Then:

sup
{Γk},{Uk}

∥∥∥∥∥
K∑

k=1

(
Γk ⊗ Uk ⊗ I + Γk ⊗ I⊗ Uk + I⊗ Uk ⊗ Uk

)∥∥∥∥∥
op

6 K + 2
√

K .

Observation 1

The value K + 2
√

K is achieved when considering Uk = I for all k.

Proof.
∥∥∑

k(2Γk + I)
∥∥

op =
∥∥2(
∑

k Γk) + K I
∥∥

op = 2
∥∥∑

k Γk
∥∥

op + K = 2
√

K + K .
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True in the Commuting Case
Observation 2

The Conjecture holds if we assume that the operators Uk commute.

Proof. If the operators Uk commute, then they are diagonalizable in a common basis. But they
are Hermitian and unitaries, so their eigenvalues are ±1 and we may assume:

Uk =
(
±1

. . .
±1

)
.

Then, using the triangular inequality, we obtain:

‖WK‖op 6

∥∥∥∥∥
K∑

k=1
Γk ⊗ (±1)⊗ 1

∥∥∥∥∥
op

+

∥∥∥∥∥
K∑

k=1
Γk ⊗ 1⊗ (±1)

∥∥∥∥∥
op

+
K∑

k=1

∥∥∥∥∥
(
±1

. . .
±1

)∥∥∥∥∥
op

=
∥∥∥∑K

k=1 Γk

∥∥∥
op

+
∥∥∥∑K

k=1 Γk

∥∥∥
op

+
∑K

k=1 1 =
√

K +
√

K + K .
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Conjecture in the General Case
Recall: WK (U1, ..,UK ) :=

∑K
k=1

(
Γk ⊗ Uk ⊗ I⊗ Uk + I⊗ Uk ⊗ Uk

)
.

Conjecture: ∀U1, ...,UK ,
∥∥∥WK (U1, ..,UK )

∥∥∥
op

6 K + 2
√

K .

Theorem 2
The Conjecture is valid for small key
sizes (K 6 7).

Proof Idea. When K 6 7, we find an explicit sum-of-
squares (SoS) decomposition:(

K + 2
√

K
)
I−WK =

∑K
k=1 αk A2

k

for some explicit coefficients αk > 0 and operators Ak .
Hence

(
K+2

√
K
)
I−WK < 0 and K+2

√
K > ‖WK‖op.

Numerical Evidence
for Larger Key Sizes

The Conjecture is also numer-
ically confirmed:
• at least for K 6 17 with the
NPA level-2 algorithm, and
• at least for K 6 18 using
the Seesaw algorithm.

The complete proof (for all K ∈ N)
is open.
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Asymptotic Upper Bound

Theorem 3

In the asymptotic regime K →∞, the following
upper bound holds:

lim
K→∞

P
(

(P,B,C) win the game
)

6
5
8 .

Proof Idea. Compute the analytical NPA hierarchy level 1.
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Conclusion
Take Away

• We suggest the first encryption protocol in the plain model for the unclonable
bit problem. It expresses explicitly in terms of Pauli strings.
• We prove the weak security for small key sizes K .
• We provide strong numerical evidence that it should hold for all K ∈ N.
•We obtain the asymptotic upper bound 5/8 on the adversaries winning probability.

More Recent Result

A different encryption scheme was recently suggested with different methods, using
nonlocal games and 2-designs [Bhattacharyya–Culf’25]. The authors prove the
weak security for all K ∈ N.

Future Work

The unclonable bit problem with strong security is still open.



Thank you!
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