Nonlocal Games Through Communication Complexity and Quantum Cryptography

Ph.D. defense

Pierre Botteron (Université de Toulouse)

Under the joint supervision of Dr. Anne Broadbent, Dr. Ion Nechita, and Dr. Clément Pellegrini.

Toulouse, July 9, 2025

Manuscripts in this Thesis

- P. Botteron, A. Broadbent, and M.-O. Proulx, "Extending the known region of nonlocal boxes that collapse communication complexity," *Physical Review Letters*, vol. 132, p. 070201, 02 (2024).
- P. Botteron, A. Broadbent, R. Chhaibi, I. Nechita, and C. Pellegrini, "Algebra of Nonlocal Boxes and the Collapse of Communication Complexity," *Quantum*, vol. 8, p. 1402, 07 (2024).
- P. Botteron and M. Weber, "Communication complexity of graph isomorphism, coloring, and distance games," arXiv:2406.02199 (2024).
- P. Botteron, A. Broadbent, E. Culf, I. Nechita, C. Pellegrini, and D. Rochette, "Towards unconditional uncloneable encryption," arXiv:2410.23064 (2024).

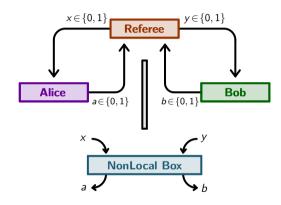
Contents

- **1** Background Notions
- 2 Algebra of Boxes
- 3 Unclonable Bit

Background Notions

3. Unclonable Bit 000000000

The Clauser–Horne–Shimony–Holt Game



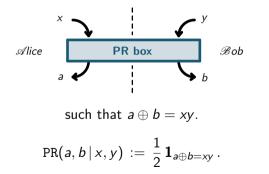
Win at CHSH
$$\iff a \oplus b = x y$$
.

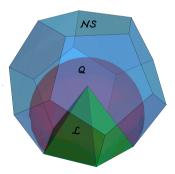
- **Strategy.** Conditional probability distribution: $S = \left\{ P : \{0,1\}^4 \to \mathbb{R} : P(a, b | x, y) \ge 0 \\ and \sum_{a,b} P(a, b | x, y) = 1 \right\}.$
- Deterministic Strategies. $\mathcal{L}_{det} := \left\{ P \in \mathcal{S} : \exists f, g \text{ s.t. } a = f(x) \text{ and } b = g(y) \right\}.$ $\rightsquigarrow \max_{P \in \mathcal{L}_{det}} \mathbb{P}(P \text{ win}) = 75\%.$
- Classical Strategies.
 $$\begin{split} \mathcal{L} &:= \left\{ P = \sum_{i} \lambda_{i} P_{i} \, : \, \lambda_{i} \geqslant 0, \sum_{i} \lambda_{i} = 1, P_{i} \in \mathcal{L}_{det} \right\}. \\ & \rightsquigarrow \max_{P \in \mathcal{L}} \mathbb{P}(P \text{ win}) = 75\%. \end{split}$$
- Quantum Strategies. $\mathcal{Q} := \left\{ \mathsf{P} = \langle \psi | E_{\mathsf{a}|_{\mathsf{X}}} \otimes F_{\mathsf{b}|_{\mathsf{Y}}} | \psi \rangle : \begin{array}{c} |\psi \rangle \text{ is a quantum state} \\ \{E_{\mathsf{a}|_{\mathsf{X}}} \} \& \{F_{\mathsf{b}|_{\mathsf{Y}}} \} \text{ are q. meas.} \end{array} \right\}.$ $\rightsquigarrow \max_{\mathsf{P} \in \mathcal{Q}} \mathbb{P}(\mathsf{P} \text{ win}) = \cos^2 \left(\frac{\pi}{8} \right) \approx 85\%.$
- Non-Signaling Strategies. $\mathcal{NS} := \{ P \in S : \sum_{a} P(a, b|x, y) = P(b|y), \sum_{b} P(a, b|x, y) = P(a|x) \}.$ $\rightsquigarrow \max_{P \in \mathcal{NS}} \mathbb{P}(P \text{ win}) = 100\%.$

Pierre Botteron

3. Unclonable Bit 000000000

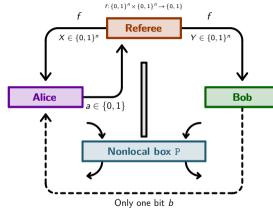
The Popescu–Rohrlich Box





3. Unclonable Bit 000000000

Collapse of Communication Complexity



Win $\iff a = f(X, Y)$.

Def. A function f is said to be **trivial** (in the sense of communication complexity) if Alice correctly guesses any value f(X, Y) with only one bit transmitted from Bob to Alice, for any X and Y.

Ex. For n = 2, $X = (x_1, x_2)$, $Y = (y_1, y_2)$: • $f := x_1 \oplus y_1 \oplus x_2 \oplus y_2 \oplus 1$ is trivial. • $g := (x_1 x_2) \oplus (y_1 y_2)$ is trivial. • $h := (x_1 y_1) \oplus (x_2 y_2)$ is NOT trivial.

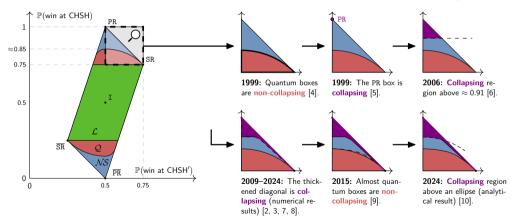
Def. We say that a nonlocal box P collapses CC if $\exists p > 1/2$ such that $\forall n \in \mathbb{N}, \forall f : \{0,1\}^{2n} \rightarrow \{0,1\}$, and $\forall X, Y \in \{0,1\}^n$, we have:

 $\mathbb{P}(a = f(X, Y) | X, Y, P) \geq \mathfrak{p}.$

Ex. The PR box is collapsing [van Dam'99].
Local (*L*) and quantum (*Q*) boxes are NOT collapsing [Cleve *et al.*'99].

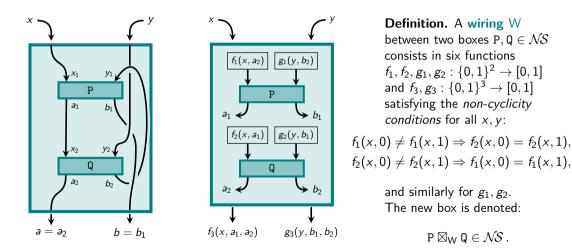
3. Unclonable Bit 000000000

Collapse of Communication Complexity

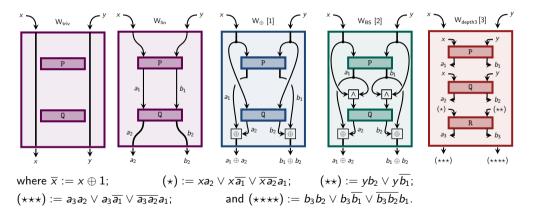


2. Algebra of Boxes •••••••

Wiring of Nonlocal Boxes



Examples of Wirings in the Literature



Algebra of Boxes

Observation: Given a wiring $W = (f_1, g_1, f_2, g_2, f_3, g_3)$, the map $(P, Q) \mapsto P \boxtimes_W Q$ is bilinear:

 \Rightarrow The vector space $\mathcal{B}_W := (\{boxes\}, \boxtimes_W)$ is an algebra, that we call the algebra of boxes.

Proposition (B.-Broadbent-Chhaibi-Nechita-Pellegrini'24)

Assume W is a wiring such that $f_1 = f_2 = f(x)$ and $g_1 = g_2 = g(y)$. Then:

1 \mathcal{B}_W is commutative $\iff f_3(x, a_1, a_2) = f_3(x, a_2, a_1)$ and $g_3(y, b_1, b_2) = g_3(y, b_2, b_1)$.

If in addition f(x) = x and g(y) = y:

2
$$\mathcal{B}_W$$
 is associative $\iff f_3(x, a_1, f_3(x, a_2, a_3)) = f_3(x, f_3(x, a_1, a_2), a_3)$ and $g_3(y, b_1, g_3(y, b_2, b_3)) = g_3(y, g_3(y, b_1, b_2), b_3).$

2 ALCEBRA OF BOXES 0000000000

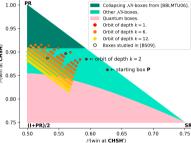
Orbit of a Box Orbit of a box **P** until depth k = 12 (wiring W = W_{BS})

 $\mathsf{Orbit}^{(3)}_{\mathcal{W}}(\mathsf{P}) = \{(\mathsf{P} \boxtimes \mathsf{P}) \boxtimes \mathsf{P}, \mathsf{P} \boxtimes (\mathsf{P} \boxtimes \mathsf{P})\},\$

 $(P \boxtimes P) \boxtimes (P \boxtimes P), P \boxtimes ((P \boxtimes P) \boxtimes P), P \boxtimes (P \boxtimes (P \boxtimes P)) \},$

 $Orbit_{M}^{(k)}(P) := \{ all possible products with k \}$ times the term P, using the multiplication \boxtimes_W }.

0.90 (win at CHSH)

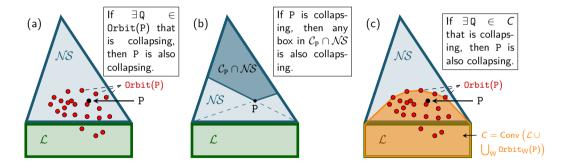


Theorem (B.–Broadbent–Chhaibi–Nechita–Pellegrini'24)

For fixed k, the points of the k-orbit are aligned, and the highest CHSH-value is achieved by the parenthesization with multiplication only on the right: $P^{\boxtimes k} := \left(\left((P \boxtimes P) \boxtimes P \right) \cdots \right) \boxtimes P$.

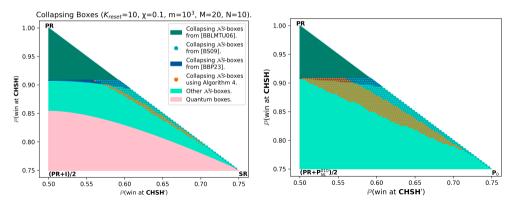
Pierre Botteron

Here is the consequence to Communication Complexity:



Numerical Results

Using a gradient descent algorithm, we obtain in orange new collapsing boxes (this result is similar to the independent and concurrent work of [Eftaxias et al.'23] [3]):



Pierre Botteron

Collapse of CC from Multiplication Tables

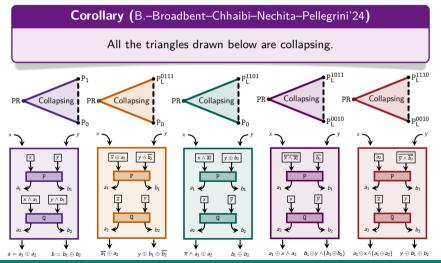
Theorem (B.–Broadbent–Chhaibi–Nechita–Pellegrini'24)

Let $Q, R \in \mathcal{NS}$ be boxes. Assume there exists a wiring $W \in \mathcal{W}$ that induces the following multiplication table:

	PR	Q	R
PR	PR	PR	PR
Q	$\frac{1}{2}(Q+R)$	Q	R
R	PR	R	Q

Then the triangle $Conv{PR, Q, R} \setminus Conv{Q, R}$ is collapsing.

Collapse of CC



Pierre Botteron

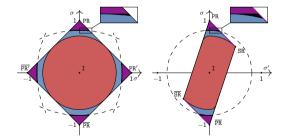
3. Unclonable Bit 000000000

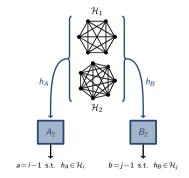
Examples of Other Methods to Collapse CC

B.-Broadbent-Proulx, PRL:132 (7 2024) [10]. Using bias amplification by majority function, one can prove that all the boxes above an explicit ellipse collapse CC:

B.-Weber, arXiv:2406.02199 [11].

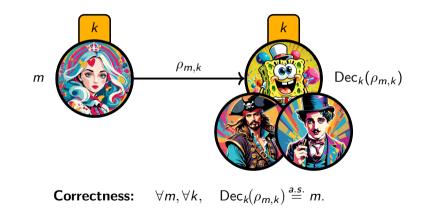
In other nonlocal games related to graphs, one can show that some non-signaling correlations collapse CC:





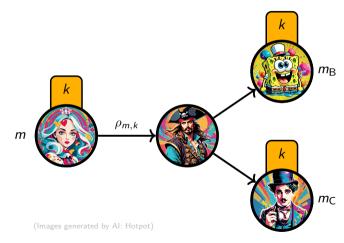
Unclonable Bit

Scenario



3. Unclonable Bit 00000000

No-Cloning Game



• Rule: The malicious team (P, B, C) wins iff. $m_B = m_C = m$.

• Def (Unclonable-Indistinguishable Security): The encryption scheme $(m, k) \mapsto \rho_{m,k}$ is said weakly secure if:

$$\mathbb{P}\Big((\mathsf{P},\mathsf{B},\mathsf{C}) \mathsf{ win}\Big) \ \leqslant \ rac{1}{2} + f(\lambda) \, ,$$

where $\lim f(\lambda) = 0$, and where λ is the security parameter. It is *strongly secure* if $f(\lambda) = \operatorname{negl}(\lambda)$.

• Unclonable Bit Problem (Broadbent-Lord'20): Is there an encryption scheme $(m, k) \mapsto \rho_{m,k}$ that is both correct and strongly secure?

Pierre Botteron

Mathematical Translation

The winning probability at the no-cloning game is expressed as follows:

$$\mathbb{P}\Big((\mathsf{P},\mathsf{B},\mathsf{C}) \text{ win } \mid \rho_{m,k}\Big) = \underset{\substack{m \in \{0,1\}\\k \leftarrow \mathsf{Gen}(1^{\lambda})}}{\mathbb{E}} \sum_{\substack{m_{\mathsf{B}}, m_{\mathsf{C}} \in \{0,1\}\\m_{\mathsf{B}}, m_{\mathsf{C}} \in \{0,1\}}} \mathbf{1}_{\{m_{\mathsf{B}}=m_{\mathsf{C}}=m\}} \operatorname{Tr}\Big[\Phi(\rho_{m,k})\big(B_{m_{\mathsf{B}}|k} \otimes C_{m_{\mathsf{C}}|k}\big)\Big]$$
$$= \underset{\substack{m,k\\m,k}}{\mathbb{E}} \operatorname{Tr}\Big[\Phi(\rho_{m,k})\big(B_{m|k} \otimes C_{m|k}\big)\Big].$$

GoalFind the most secure encryption scheme against the strongest attack,*i.e.* solve: $\inf_{\rho_{m,k}} \sup_{\Phi, \{B_{i|k}\}, \{C_{j|k}\}} \mathbb{E}_{m,k} \operatorname{Tr} \Big[\Phi(\rho_{m,k}) \big(B_{m|k} \otimes C_{m|k} \big) \Big].$

Pierre Botteron

Candidate Scheme

Let $k \in \{1, .., K\}$. Consider a family $\{\Gamma_1, ..., \Gamma_K\}$ that is:

- Hermitian (*i.e.* $\Gamma_k^{\dagger} = \Gamma_k$ for all k); and
- Unitary (*i.e.* $\Gamma_{K}^{\dagger}\Gamma_{k} = \Gamma_{K}\Gamma_{k}^{\dagger} = \mathbb{I}$ for all k); and
- Pairwise anti-commuting (*i.e.* $\Gamma_k \Gamma_j = -\Gamma_j \Gamma_k$ for all $j \neq k$).
- Why? Because then $\left\|\sum_{k=1}^{K} v_k \Gamma_k\right\|_{op} = \|v\|_2$ for any $v = (v_1, ..., v_K) \in \mathbb{R}^K$, and in particular: $\left\|\sum_{k=1}^{K} \Gamma_k\right\|_{op} = \left\|(1, ..., 1)\right\|_2 = \sqrt{1^2 + \dots + 1^2} = \sqrt{K}.$

Candidate Scheme

For
$$m \in \{0,1\}$$
 and $k \in \{1,...,K\}$, consider:

$$\rho_{m,k} := \frac{2}{d} \frac{\mathbb{I}_d + (-1)^m \Gamma_k}{2}.$$

This scheme is correct.

Proof. Given k and $\rho_{m,k}$, measure $\rho_{m,k}$ in an eigenbasis of Γ_k . Obtain 1 or -1, and recover the value of m.

Pierre Botteron

23 / 30

Upper Bound on the Winning Probability

Using the candidate scheme, we obtain the following upper bound on the *best* winning probability (where the U_k are Hermitian unitaries):

$$\mathbb{P}^{*}\left((\mathsf{P},\mathsf{B},\mathsf{C})\mathsf{win}\right) \leqslant \frac{1}{4} + \frac{1}{4K} \sup_{\{U_{k}\}} \left\| \sum_{k=1}^{K} \left(\Gamma_{k} \otimes U_{k} \otimes \mathbb{I}_{D} + \Gamma_{k} \otimes \mathbb{I}_{D} \otimes U_{k} + \mathbb{I}_{d} \otimes U_{k} \otimes U_{k} \right) \right\|_{\mathsf{op}}.$$

$$=:W_{K}(U_{1},...,U_{K})$$

$$\frac{\mathsf{Theorem}}{\mathsf{(B.-Broadbent-Culf-Nechta-Pellegrini-Rochette'24)}}$$
If for all Hermitian unitaries $U_{1},...,U_{K}$:
$$\left\| W_{K}(U_{1},...,U_{K}) \right\|_{\mathsf{op}} \leqslant K + 2\sqrt{K},$$
then, the scheme defined by the Γ_{k} 's is weakly secure:
$$\mathbb{P}\left((\mathsf{P},\mathsf{B},\mathsf{C}) \mathsf{ win the game}\right) \leqslant \frac{1}{2} + \frac{1}{2\sqrt{K}}.$$

Pierre Botteron

Now, we want to prove:

Conjecture

Let $K \ge 2$ be an integer, $\Gamma_1, ..., \Gamma_K$ be Hermitian unitaries that pairwise anti-commute, and $U_1, ..., U_K$ be Hermitian unitaries. Then:

$$\sup_{\{\Gamma_k\},\{U_k\}}\left\|\sum_{k=1}^{K} \left(\Gamma_k \otimes U_k \otimes \mathbb{I} + \Gamma_k \otimes \mathbb{I} \otimes U_k + \mathbb{I} \otimes U_k \otimes U_k\right)\right\|_{\mathrm{op}} \leqslant K + 2\sqrt{K}.$$

Observation 1

The value $K + 2\sqrt{K}$ is achieved when considering $U_k = \mathbb{I}$ for all k.

Proof.
$$\left\|\sum_{k} (2\Gamma_{k} + \mathbb{I})\right\|_{op} = \left\|2\left(\sum_{k}\Gamma_{k}\right) + K\mathbb{I}\right\|_{op} = 2\left\|\sum_{k}\Gamma_{k}\right\|_{op} + K = 2\sqrt{K} + K.$$

3. Unclonable Bit 00000000

True in the Commuting Case

Observation 2

The Conjecture holds if we assume that the operators U_k commute.

Proof. If the operators U_k commute, then they are diagonalizable in a common basis. But they are Hermitian and unitaries, so their eigenvalues are ± 1 and we may assume:

$$U_k = egin{pmatrix} \pm 1 & & \ & \cdot & \ & \pm 1 \end{pmatrix} \, .$$

Then, using the triangular inequality, we obtain:

$$\begin{split} \left\| W_{\mathcal{K}} \right\|_{\mathsf{op}} &\leq \left\| \sum_{k=1}^{K} \Gamma_{k} \otimes (\pm 1) \otimes 1 \right\|_{\mathsf{op}} + \left\| \sum_{k=1}^{K} \Gamma_{k} \otimes 1 \otimes (\pm 1) \right\|_{\mathsf{op}} + \sum_{k=1}^{K} \left\| \begin{pmatrix} \pm 1 \\ \ddots \\ \pm 1 \end{pmatrix} \right\|_{\mathsf{op}} \\ &= \left\| \sum_{k=1}^{K} \Gamma_{k} \right\|_{\mathsf{op}} + \left\| \sum_{k=1}^{K} \Gamma_{k} \right\|_{\mathsf{op}} + \sum_{k=1}^{K} 1 = \sqrt{K} + \sqrt{K} + K \,. \quad \Box \end{split}$$

Pierre Botteron

Conjecture in the General Case

 $W_{\kappa}(U_1,..,U_{\kappa}) := \sum_{k=1}^{\kappa} \Big(\Gamma_k \otimes U_k \otimes \mathbb{I} + \Gamma_k \otimes \mathbb{I} \otimes U_k + \mathbb{I} \otimes U_k \otimes U_k \Big).$

 $\forall U_1, ..., U_K, \quad \left\| W_K(U_1, ..., U_K) \right\|_{cn} \leqslant K + 2\sqrt{K}.$

Recall:

Conjecture:

Theorem (B.–Broadbent–Culf– Nechita–Pellegrini–Rochette'24)

The Conjecture is valid for small key sizes $(K \leq 7)$.

Proof Idea. When $K \leq 7$, we find an explicit sum-of-squares (SoS) decomposition:

$$\left(K + 2\sqrt{K}\right)\mathbb{I} - W_{K} = \sum_{k=1}^{K} \alpha_{k} A_{k}^{2}$$

for some explicit coefficients $\alpha_k \ge 0$ and operators A_k . Hence $\left(K+2\sqrt{K}\right)\mathbb{I}-W_K \ge 0$ and $K+2\sqrt{K} \ge \|W_K\|_{op}$. \Box

Numerical Evidence for Larger Key Sizes

The Conjecture is also numerically confirmed:

• at least for $K\leqslant 17$ with the

NPA level-2 algorithm, and

• at least for $K \leq 18$ using the Seesaw algorithm.

The complete proof (for all $K \in \mathbb{N}$) is open.

Conclusion

Conclusion

Summary

• We prove the collapse of communication using various methods: wiring of boxes, bias amplification, and graph properties.

• We propose a candidate scheme for the unclonable bit problem in the plain model. We partially prove the weak security and provide numerical evidence that it holds for any key size.

Future Work

• Find other methods to discard non-physical correlations using communication complexity or any other information-based principle.

• Study the strong security in the unclonable bit problem.

Thank you!

Bibliography

- M. Forster, S. Winkler, and S. Wolf, "Distilling nonlocality," *Phys. Rev. Lett.*, vol. 102, Mar. 2009.
- [2] N. Brunner and P. Skrzypczyk, "Nonlocality distillation and postquantum theories with trivial communication complexity," *Phys. Rev. Lett.*, vol. 102, Apr. 2009.
- [3] G. Eftaxias, M. Weilenmann, and R. Colbeck, "Advantages of multicopy nonlocality distillation and its application to minimizing communication complexity," *Phys. Rev. Lett.*, vol. 130, Mar. 2023.
- [4] R. Cleve, W. van Dam, M. Nielsen, and A. Tapp, Quantum Entanglement and the Communication Complexity of the Inner Product Function, pp. 61–74. Springer Berlin Heidelberg, 1999.
- [5] W. van Dam, Nonlocality & Communication Complexity. Ph.d. thesis., University of Oxford, Departement of Physics, 1999.
- [6] G. Brassard, H. Buhrman, N. Linden, A. A. Méthot, A. Tapp, and F. Unger, "Limit on nonlocality in any world in which communication complexity is not trivial," *Phys. Rev. Lett.*, vol. 96, June 2006.

- [7] P. Botteron, A. Broadbent, R. Chhaibi, I. Nechita, and C. Pellegrini, "Algebra of Nonlocal Boxes and the Collapse of Communication Complexity," *Quantum*, vol. 8, p. 1402, 07 2024.
- [8] S. G. A. Brito, M. G. M. Moreno, A. Rai, and R. Chaves, "Nonlocality distillation and quantum voids," *Phys. Rev. A*, vol. 100, July 2019.
- [9] M. Navascués, Y. Guryanova, M. J. Hoban, and A. Acín, "Almost quantum correlations," *Nature Communications*, vol. 6, Feb. 2015.
- [10] P. Botteron, A. Broadbent, and M.-O. Proulx, "Extending the known region of nonlocal boxes that collapse communication complexity," *Phys. Rev. Lett.*, vol. 132, p. 070201, 02 2024.
- [11] P. Botteron and M. Weber, "Communication complexity of graph isomorphism, coloring, and distance games," 2024. arXiv:2406.02199.
- [12] P. Botteron, A. Broadbent, E. Culf, I. Nechita, C. Pellegrini, and D. Rochette, "Towards unconditional uncloneable encryption," 2024. arXiv:2410.23064.