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The Clauser–Horne–Shimony–Holt Game
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Alice Bob

Referee
y ∈{0, 1}x ∈{0, 1}

Referee

a∈{0, 1} b∈{0, 1}
Alice Bob

Win at CHSH ⇐⇒ a ⊕ b = x y .

• Strategy. Conditional probability distribution:
S =

{
P : {0, 1}4 → R : P(a, b | x , y) > 0

and
∑

a,b P(a, b | x , y) = 1
}
.

• Deterministic Strategies.
Ldet :=

{
P ∈ S : ∃f , g s.t. a = f (x) and b = g(y)

}
.

 maxP∈Ldet P(P win) = 75%.

• Classical Strategies.
L :=

{
P =

∑
i λiPi : λi > 0,

∑
i λi = 1, Pi ∈ Ldet

}
.

 maxP∈L P(P win) = 75%.
• Quantum Strategies.

|ψ〉 = 1√
2

(
|00〉+ |11〉

) Q :=
{

P = 〈ψ|Ea|x ⊗ Fb|y |ψ〉 : |ψ〉 is a quantum state
{Ea|x}& {Fb|y} are q.meas.

}
.

 maxP∈Q P(P win) = cos2
(
π
8
)
≈ 85%.

• Non-Signaling Strategies.

x y

a b

NonLocal Box

NS :=
{

P ∈ S :
∑

a P(a, b|x , y)=P(b|y),
∑

b P(a, b|x , y)=P(a|x)
}
.

 maxP∈NS P(P win) = 100%.
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The Popescu–Rohrlich Box

x y

a b

PR boxAlice Bob

such that a ⊕ b = xy .

PR(a, b | x , y) := 1
2 1a⊕b=xy .

Out[ ]=
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Collapse of Communication Complexity

6 / 30

Alice Bob

Referee

f :{0, 1}n×{0, 1}n→{0, 1}

ff
Referee

X ∈ {0, 1}n Y ∈ {0, 1}n

a ∈ {0, 1}
Alice

Win ⇐⇒ a = f (X ,Y ).

Nonlocal box P

Only one bit b

Bob

Def. A function f is said to be trivial (in the
sense of communication complexity) if Alice cor-
rectly guesses any value f (X ,Y ) with only one bit
transmitted from Bob to Alice, for any X and Y .

Ex. For n = 2, X = (x1, x2), Y = (y1, y2):
• f := x1 ⊕ y1 ⊕ x2 ⊕ y2 ⊕ 1 is trivial.
• g := (x1 x2)⊕ (y1 y2) is trivial.
• h := (x1 y1)⊕ (x2 y2) is NOT trivial.

Def. We say that a nonlocal box P collapses CC
if ∃ p> 1/2 such that ∀n ∈ N, ∀f : {0, 1}2n →
{0, 1}, and ∀X ,Y ∈ {0, 1}n, we have:

P
(
a = f (X ,Y ) |X ,Y , P

)
> p .

Ex. • The PR box is collapsing [van Dam’99].
• Local (L) and quantum (Q) boxes are NOT col-
lapsing [Cleve et al.’99].
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Collapse of Communication Complexity

NS
Q

L

P
(
win at CHSH

)

P
(
win at CHSH′

)
0
0

0.5

0.5

0.75

0.75

≈0.85

1 PR

SR

PR

SR

I

1999: Quantum boxes
are non-collapsing [4].

1999: The PR box is
collapsing [5].

PR

2006: Collapsing re-
gion above ≈ 0.91 [6].

2009–2024: The thick-
ened diagonal is col-
lapsing (numerical re-
sults) [2, 3, 7, 8].

2015: Almost quan-
tum boxes are non-
collapsing [9].

2024: Collapsing region
above an ellipse (analyti-
cal result) [10].
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Wiring of Nonlocal Boxes

P

Q

x

a = a2

y

b = b1

x1

a1

x2

a2 b2

y1

b1

y2

P

Q

P

Q

x

f1(x , a2)

a1

f2(x , a1)

a2

f3(x , a1, a2)

y

g1(y , b2)

b1
g2(y , b1)

b2

g3(y , b1, b2)

Definition. A wiring W
between two boxes P, Q ∈ NS
consists in six functions
f1, f2, g1, g2 : {0, 1}2 → [0, 1]
and f3, g3 : {0, 1}3 → [0, 1]
satisfying the non-cyclicity
conditions for all x , y :

f1(x , 0) 6= f1(x , 1)⇒ f2(x , 0) = f2(x , 1),
f2(x , 0) 6= f2(x , 1)⇒ f1(x , 0) = f1(x , 1),

and similarly for g1, g2.
The new box is denoted:

P�W Q ∈ NS .
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Examples of Wirings in the Literature
Wtriv

P

Q

x

x

y

y

Wlin

P

Q

x

a2

y

b2

a1

a2

b1

b2

W⊕ [1]

P

Q

x

•

⊕

a1 ⊕ a2

y

•

⊕

b1 ⊕ b2

a1

a2 b2

b1

P

Q

WBS [2]

P

Q

x

•

•

∧

⊕

a1 ⊕ a2

y

•

•

∧

⊕

b1 ⊕ b2

a1

a2

b1

b2

∧ ∧

Wdepth3 [3]

P

Q

R

x

x

a1
x

a2
(?)

a3

(???)

y

y

b1
y

b2
(??)

b3

(????)

where x := x ⊕ 1; (?) := xa2 ∨ xa1 ∨ xa2a1; (??) := yb2 ∨ yb1;
(???) := a3a2 ∨ a3a1 ∨ a3a2a1; and (????) := b3b2 ∨ b3b1 ∨ b3b2b1.
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Algebra of Boxes
Observation: Given a wiring W = (f1, g1, f2, g2, f3, g3), the map (P, Q) 7→ P�W Q is bilinear:

P �W Q
(
a, b | x , y

)
:=
∑

a1,a2,b1,b2
P
(
a1, b1 | f1(x , a2), g1(y , b2)

)
× Q
(
a2, b2 | f2(x , a1), g2(y , b1)

)
× 1a=f3(x,a1,a2) × 1b=g3(y,b1,b2) .

⇒ The vector space BW :=
(
{boxes},�W

)
is an algebra, that we call the algebra of boxes.

Proposition (B.–Broadbent–Chhaibi–Nechita–Pellegrini’24)

Assume W is a wiring such that f1 = f2 = f (x) and g1 = g2 = g(y). Then:
1 BW is commutative ⇐⇒ f3(x , a1, a2) = f3(x , a2, a1) and g3(y , b1, b2) = g3(y , b2, b1).

If in addition f (x) = x and g(y) = y :
2 BW is associative ⇐⇒ f3(x , a1, f3(x , a2, a3)) = f3(x , f3(x , a1, a2), a3) and

g3(y , b1, g3(y , b2, b3)) = g3(y , g3(y , b1, b2), b3).
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Orbit of a Box
Orbit(3)

W (P) =
{

(P� P)� P, P� (P� P)
}
,

Orbit(4)
W (P) =

{(
(P�P)�P

)
�P,

(
P�(P�P)

)
�P,

(P�P)�(P�P), P�
(

(P�P)�P
)
, P�

(
P�(P�P)

)}
,

Orbit(k)
W (P) :=

{
all possible products with k

times the term P, using the multiplication �W
}
.

Theorem (B.–Broadbent–Chhaibi–Nechita–Pellegrini’24)

For fixed k, the points of the k-orbit are aligned, and the highest CHSH-value is achieved by
the parenthesization with multiplication only on the right: P�k :=

((
(P� P)� P

)
· · ·
)
� P .
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Here is the consequence to Communication Complexity:

(a)

NS

L

P
Orbit(P)

If ∃ Q ∈
Orbit(P) that
is collapsing,
then P is also
collapsing.

(b)

NS

L

P

CP ∩NS

If P is collaps-
ing, then any
box in CP ∩ NS
is also collaps-
ing.

(c)

NS

L

P
Orbit(P)

C = Conv
(
L∪⋃

W OrbitW(P)
)

If ∃ Q ∈ C
that is collaps-
ing, then P is
also collapsing.
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Numerical Results
Using a gradient descent algorithm, we obtain in orange new collapsing boxes (this result is

similar to the independent and concurrent work of [Eftaxias et al.’23] [3]):
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Collapse of CC from Multiplication Tables

Theorem (B.–Broadbent–Chhaibi–Nechita–Pellegrini’24)

Let Q, R ∈ NS be boxes. Assume there exists a wiring W ∈ W
that induces the following multiplication table:

PR Q R

PR PR PR PR

Q 1
2

(
Q + R

)
Q R

R PR R Q

Then the triangle Conv{PR, Q, R}\Conv{Q, R} is collapsing.
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Collapse of CC
Corollary (B.–Broadbent–Chhaibi–Nechita–Pellegrini’24)

All the triangles drawn below are collapsing.

CollapsingPR

P0

P1

CollapsingPR

P0

P0111L

CollapsingPR

P0

P1101L

CollapsingPR

P0010L

P1011L

CollapsingPR

P0010L

P1110L

P

Q

x

x

a1

x ∧ a1

a2

a = a1 ⊕ a2

y

y

b1
y ∧ b1

b2

b = b1 ⊕ b2

P

Q

x

x ⊕ a2

a1

x

a2

a1 ⊕ a2

y

y ∧ b2

b1
y

b2

y ⊕ b1 ⊕ b2

P

Q

x

x ∧ a2

a1

x

a2

x ∧ a1 ⊕ a2

y

y ⊕ b2

b1
y

b2

b1 ⊕ b2

P

Q

x

x ∧ a2

a1

x

a2

a1 ⊕ x ∧ a2

y

b2

b1
y

b2

b1⊕y ∧(b1⊕b2)

P

Q

x

a2

a1

x

a2

a1⊕x∧(a1⊕a2)

y

y ∧ b2

b1
y

b2

y ⊕ b1 ⊕ b2
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Examples of Other Methods to Collapse CC
B.–Broadbent–Proulx, PRL:132 (7 2024) [10].
Using bias amplification by majority function,
one can prove that all the boxes above an
explicit ellipse collapse CC:

σ

σ′

−1

−1

1

1

PR

PR′

PR

PR′ I

σ

σ′

−1

−1

1

1

PR

SR

PR

SR

I

B.–Weber, arXiv:2406.02199 [11].
In other nonlocal games related to graphs, one
can show that some non-signaling correlations
collapse CC:

A2 B2

H1

H2

hBhA

a = i−1 s.t. hA∈Hi b = j−1 s.t. hB ∈Hj
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Scenario

19 / 30

m

k

ρm,k

k

Deck(ρm,k)

Correctness: ∀m, ∀k, Deck
(
ρm,k

)a.s.= m.

(Images generated by AI: Hotpot)
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No-Cloning Game

20 / 30

m

k

ρm,k

k

k

mB

mC

(Images generated by AI: Hotpot)

• Rule: The malicious team (P,B,C) wins
iff. mB = mC = m.
• Def (Unclonable-Indistinguishable
Security): The encryption scheme
(m, k) 7→ ρm,k is said weakly secure if:

P
(

(P,B,C) win
)
6

1
2 + f (λ) ,

where lim f (λ) = 0, and where λ is the
security parameter. It is strongly secure if
f (λ) = negl(λ).
• Unclonable Bit Problem
(Broadbent–Lord’20): Is there an
encryption scheme (m, k) 7→ ρm,k that is
both correct and strongly secure?
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Mathematical Translation
The winning probability at the no-cloning game is expressed as follows:

P
(

(P,B,C) win
∣∣ ρm,k

)
= E

m∈{0,1}
k←Gen(1λ)

∑
mB,mC∈{0,1}

1{mB=mC=m} Tr
[
Φ(ρm,k)

(
BmB|k ⊗ CmC|k

)]
= E

m,k
Tr
[
Φ(ρm,k)

(
Bm|k ⊗ Cm|k

)]
.

Goal

Find the most secure encryption scheme against the strongest attack,
i.e. solve:

inf
ρm,k

sup
Φ,{Bi|k},{Cj|k}

E
m,k

Tr
[
Φ(ρm,k)

(
Bm|k ⊗ Cm|k

)]
.
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Candidate Scheme
Let k ∈ {1, ..,K}. Consider a family {Γ1, . . . , ΓK} that is:

Hermitian (i.e. Γ†k = Γk for all k); and

Unitary (i.e. Γ†K Γk = ΓK Γ†k = I for all k); and
Pairwise anti-commuting (i.e. ΓkΓj = −ΓjΓk for all j 6= k).

Why? Because then
∥∥∑K

k=1 vkΓk
∥∥
op = ‖v‖2 for any v = (v1, .., vK ) ∈ RK , and in particular:∥∥∥∑K

k=1 Γk

∥∥∥
op

=
∥∥(1, .., 1)

∥∥
2 =

√
12 + · · ·+ 12 =

√
K .

Candidate Scheme

For m ∈ {0, 1} and k ∈
{1, ..,K}, consider:

ρm,k := 2
d

Id + (−1)m Γk
2 .

Observation

This scheme is correct.

Proof. Given k and ρm,k , measure ρm,k in an
eigenbasis of Γk . Obtain 1 or −1, and recover
the value of m.
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Upper Bound on the Winning Probability
Using the candidate scheme, we obtain the following upper bound on the best winning
probability (where the Uk are Hermitian unitaries):

P∗
(

(P,B,C) win
)
6

1
4 + 1

4K sup
{Uk}

∥∥∥∥∥
K∑

k=1

(
Γk ⊗ Uk ⊗ ID + Γk ⊗ ID ⊗ Uk + Id ⊗ Uk ⊗ Uk

)
︸ ︷︷ ︸

=:WK (U1,..,UK )

∥∥∥∥∥
op

.

Theorem
(B.–Broadbent–Culf–Nechita–Pellegrini–Rochette’24)

If for all Hermitian unitaries U1, ..,UK :∥∥∥WK (U1, ..,UK )
∥∥∥
op
6 K + 2

√
K ,

then, the scheme defined by the Γk ’s is weakly secure:

P
(

(P,B,C) win the game
)
6

1
2 + 1

2
√
K
.
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Now, we want to prove:
Conjecture

Let K > 2 be an integer, Γ1, .., ΓK be Hermitian unitaries that pairwise anti-commute,
and U1, ..,UK be Hermitian unitaries. Then:

sup
{Γk},{Uk}

∥∥∥∥∥
K∑

k=1

(
Γk ⊗ Uk ⊗ I + Γk ⊗ I⊗ Uk + I⊗ Uk ⊗ Uk

)∥∥∥∥∥
op

6 K + 2
√
K .

Observation 1

The value K + 2
√
K is achieved when considering Uk = I for all k.

Proof.
∥∥∑

k(2 Γk + I)
∥∥
op =

∥∥2 (
∑

k Γk) + K I
∥∥
op = 2

∥∥∑
k Γk

∥∥
op + K = 2

√
K + K .
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True in the Commuting Case
Observation 2

The Conjecture holds if we assume that the operators Uk commute.

Proof. If the operators Uk commute, then they are diagonalizable in a common basis. But they
are Hermitian and unitaries, so their eigenvalues are ±1 and we may assume:

Uk =
(
±1

. . .
±1

)
.

Then, using the triangular inequality, we obtain:∥∥WK
∥∥
op 6

∥∥∥∥∥
K∑

k=1
Γk ⊗ (±1)⊗ 1

∥∥∥∥∥
op

+

∥∥∥∥∥
K∑

k=1
Γk ⊗ 1⊗ (±1)

∥∥∥∥∥
op

+
K∑

k=1

∥∥∥∥∥
(
±1

. . .
±1

)∥∥∥∥∥
op

=
∥∥∥∑K

k=1 Γk

∥∥∥
op

+
∥∥∥∑K

k=1 Γk

∥∥∥
op

+
∑K

k=1 1 =
√
K +

√
K + K .
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Conjecture in the General Case
Recall: WK (U1, ..,UK ) :=

∑K
k=1

(
Γk ⊗ Uk ⊗ I + Γk ⊗ I⊗ Uk + I⊗ Uk ⊗ Uk

)
.

Conjecture: ∀U1, ...,UK ,
∥∥∥WK (U1, ..,UK )

∥∥∥
op
6 K + 2

√
K .

Theorem (B.–Broadbent–Culf–
Nechita–Pellegrini–Rochette’24)

The Conjecture is valid for small key
sizes (K 6 7).

Proof Idea. When K 6 7, we find an explicit sum-of-
squares (SoS) decomposition:(

K + 2
√

K
)
I−WK =

∑K
k=1 αk A2

k

for some explicit coefficients αk > 0 and operators Ak .
Hence

(
K+2

√
K
)
I−WK < 0 and K+2

√
K > ‖WK‖op.

Numerical Evidence
for Larger Key Sizes

The Conjecture is also numer-
ically confirmed:
• at least for K 6 17 with the
NPA level-2 algorithm, and
• at least for K 6 18 using
the Seesaw algorithm.

The complete proof (for all K ∈ N)
is open.
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Conclusion
Summary

• We prove the collapse of communication using various methods: wiring of boxes,
bias amplification, and graph properties.

•We propose a candidate scheme for the unclonable bit problem in the plain model.
We partially prove the weak security and provide numerical evidence that it holds
for any key size.

Future Work

• Find other methods to discard non-physical correlations us-
ing communication complexity or any other information-based
principle.

• Study the strong security in the unclonable bit problem.



Thank you!
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