

Quantum Unclonable Cryptography: Does the Unclonable Bit Exist?

Reference: arXiv:2410.23064 [1].

Pierre Botteron
(Lyon)

Anne Broadbent
(Ottawa)

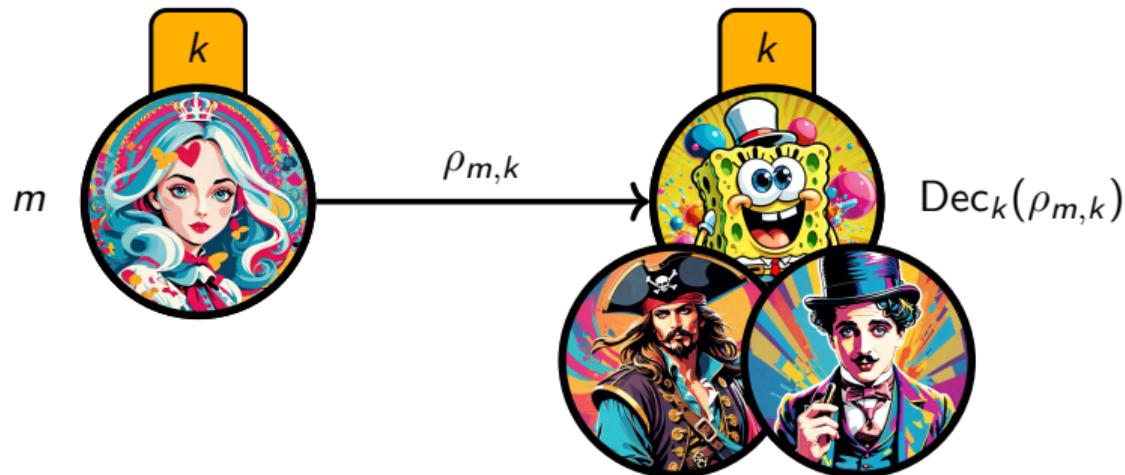
Eric Culf
(Waterloo)

Ion Nechita
(Toulouse)

Clément Pellegrini
(Toulouse)

Denis Rochette
(Paris Saclay)

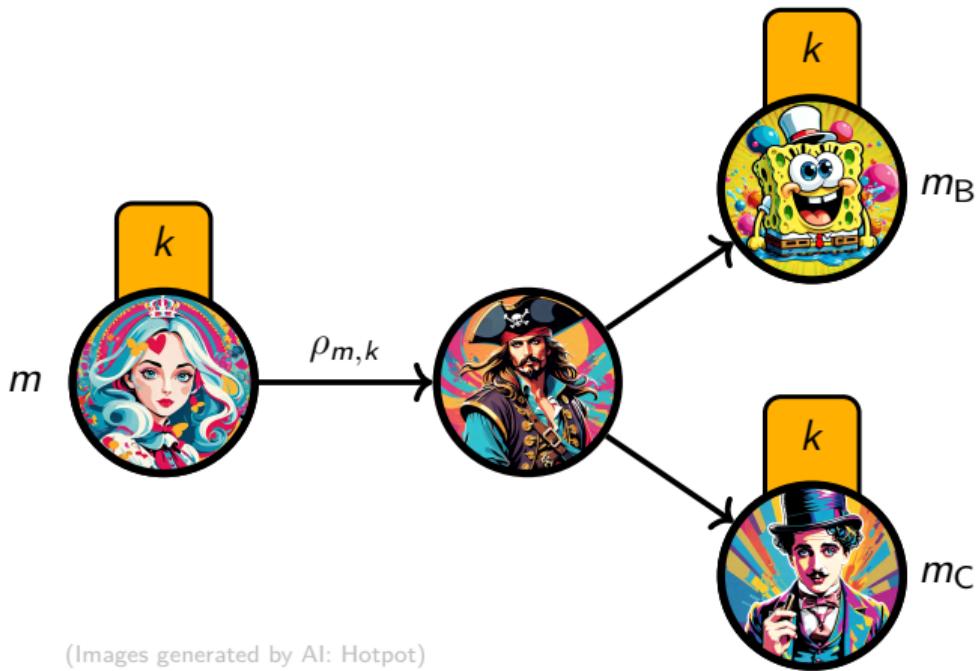
Unclonable Bit



Correctness: $\forall m, \forall k, \quad \text{Dec}_k(\rho_{m,k}) \stackrel{\text{a.s.}}{=} m.$

(Images generated by AI: Hotpot)

Unclonable Bit



- **Rule:** The malicious team (P, B, C) wins iff. $m_B = m_C = m$.

- **Def (Unclonable-Indistinguishable Security):** The encryption scheme $(m, k) \mapsto \rho_{m,k}$ is said *weakly secure* if:

$$\mathbb{P}((P, B, C) \text{ win}) \leq \frac{1}{2} + f(\lambda),$$

where $\lim f(\lambda) = 0$, and where λ is the security parameter. It is *strongly secure* if $f(\lambda) = \text{negl}(\lambda)$.

- **Unclonable Bit Problem (Broadbent–Lord'20):** Is there an encryption scheme $(m, k) \mapsto \rho_{m,k}$ that is both correct and strongly secure?

Candidate Scheme

Let $k \in \{1, \dots, K\}$. We construct a family $\{\Gamma_1, \dots, \Gamma_K\}$ of Hermitian unitaries that pairwise anti-commute as follows: if K is even, consider:

$$\Gamma_j := X^{\otimes(j-1)} \otimes Y \otimes \mathbb{I}^{\otimes(\frac{K}{2}-j)} \quad \text{and} \quad \Gamma_{\frac{K}{2}+j} := X^{\otimes(j-1)} \otimes Z \otimes \mathbb{I}^{\otimes(\frac{K}{2}-j)},$$

for any $j \in \{1, \dots, \frac{K}{2}\}$. If K is odd, add $X^{\otimes \frac{K-1}{2}}$.

Candidate Scheme

For $m \in \{0, 1\}$ and $k \in \{1, \dots, K\}$, consider:

$$\rho_{m,k} := \frac{2}{d} \frac{\mathbb{I}_d + (-1)^m \Gamma_k}{2}.$$

Observation

This scheme is correct.

Proof. Given k and $\rho_{m,k}$, measure $\rho_{m,k}$ in an eigenbasis of Γ_k . Obtain 1 or -1 , and recover the value of m . \square

Security of the Candidate Scheme

Consider $W_K(U_1, \dots, U_K) := \sum_{k=1}^K \left(\Gamma_k \otimes U_k \otimes \mathbb{I} + \Gamma_k \otimes \mathbb{I} \otimes U_k + \mathbb{I} \otimes U_k \otimes U_k \right)$.

Theorem 1

If for all Hermitian unitaries U_1, \dots, U_K :

$$\left\| W_K(U_1, \dots, U_K) \right\|_{\text{op}} \leq K + 2\sqrt{K}, \quad (1)$$

then, the scheme defined by the Γ_k 's is weakly secure:

$$\mathbb{P}((P, B, C) \text{ win the game}) \leq \frac{1}{2} + \frac{1}{2\sqrt{K}}.$$

Remark: The value $K + 2\sqrt{K}$ in eq. (1) is achieved when considering $U_k = \mathbb{I}$ for all k . Moreover, eq. (1) easily holds if we assume that the operators U_k commute.

Partial Proof of Inequality (1)

Inequality (1): $\forall U_1, \dots, U_K, \quad \|W_K(U_1, \dots, U_K)\|_{\text{op}} \leq K + 2\sqrt{K}.$

Recall: $W_K(U_1, \dots, U_K) := \sum_{k=1}^K \left(\Gamma_k \otimes U_k \otimes \mathbb{I} + \Gamma_k \otimes \mathbb{I} \otimes U_k + \mathbb{I} \otimes U_k \otimes U_k \right).$

Theorem 2

Inequality (1) is valid for small key sizes ($K \leq 7$).

Numerical Evidence for Larger Key Sizes

Inequality (1) is also numerically confirmed:

- at least until $K \leq 17$ with the NPA level-2 algorithm, and
- at least until $K \leq 18$ using the Seesaw algorithm.

Proof Idea. When $K \leq 7$, we find the following sum-of-squares (SoS) decomposition:

$$(K + 2\sqrt{K}) \mathbb{I} - W_K = \sum_{k=1}^K \alpha_k A_k^2$$

for some explicit coefficients $\alpha_k \geq 0$ and operators A_k . Hence $(K + 2\sqrt{K}) \mathbb{I} - W_K \succeq 0$ and therefore $K + 2\sqrt{K} \geq \|W_K\|_{\text{op}}$. □

The complete proof (for all $K \in \mathbb{N}$) is open.

Asymptotic Upper Bound

Theorem 3

In the asymptotic regime $K \rightarrow \infty$, the following upper bound holds:

$$\lim_{K \rightarrow \infty} \mathbb{P}((P, B, C) \text{ win the game}) \leq \frac{5}{8}.$$

Proof Idea. Compute the analytical NPA hierarchy level 1.

Conclusion

Take Away

- We suggest the first encryption protocol in the plain model for the unclonable bit problem. It expresses explicitly in terms of Pauli strings.
- We prove the weak security for small key sizes K .
- We provide strong numerical evidence that it should hold for all $K \in \mathbb{N}$.
- We obtain the asymptotic upper bound $5/8$ on the adversaries winning probability.

More Recent Result

A different encryption scheme was recently suggested with different methods, using nonlocal games and 2-designs [Bhattacharyya–Culf'25]. The authors prove the weak security for all $K \in \mathbb{N}$.

Future Work

The unclonable bit problem with *strong* security is still open.

Thank you!

Bibliography

- [1] P. Botteron, A. Broadbent, E. Culf, I. Nechita, C. Pellegrini, and D. Rochette, "Towards unconditional uncloneable encryption," 2024.
arXiv:2410.23064.
- [2] A. Broadbent and S. Lord, "Uncloneable Quantum Encryption via Oracles," in *15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020)*, vol. 158, pp. 4:1–4:22, 2020.
DOI: 10.4230/LIPIcs.TQC.2020.4.
- [3] A. Bhattacharyya and E. Culf, "Uncloneable encryption from decoupling," 2025.
arXiv:2503.19125.