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Some players Alice, Bob, Charlie, ... receive a question respectively x,y,z,... € X from a
referee. Without communication, each of them outputs an answer respectively a, b, c, ... € A.

We say that they collaboratively win the game if x, y, z, ... and a, b, c, ... satisfy a pre-defined .
relation called ol Y s g yap 4. PR Box from the Vertex Distance Game
® PR Box[12] : . .
Setting of the Game. Alice and Bob receive a vertex from The case D = 1 <= graph
x € {0, 1}y — ¥ €{0.1} The PR box is the only bi-partite non-signaling a graph G: isomorphism game
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A A and binary outputs a, b € {0, 1} such that the e 20 Denote ¢ =0 % if there
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Alice and Bob win at CHSH iff a @ b = xy. W:jnnlr:g .?ondltlon. Llet D € N. They win the game if Let D > 2. Then:
@ Other Examples of Boxes. Py, and Py; are the deterministic boxes that always give 0 ahdonty it o = ~D 7-[ o g = H
(resp. 1) to Alice and Bob independently of the inputs. d(ga. gg) if d(ga g8) <D, oG H G H
d(ha, hg) = { > D  otherwise. eGP H LG, H.

2. PR Box from the Graph Isomorphism Game

Setting of the Game. Alice and Bob It G = Ce and #H = C5 LI Cs, then any perfect strategy If dam(G) > diam(H) > D > let G =P H for some 1 < D < diam(G) and such
receive a vertex from a graph G: ]I;Oc:btlzc? (gﬁg;zgrggﬁgfm game allows Alice and 1 and if H admits exactly two that H isn;ot connected. Assume “some symmetry” in
o lice <—— ~ %ob 2 ' connected components, then any a common equitable partition of (G, H). Then there
perfect strategy for the D-distance exists a perfect strategy for the D-distance game of
and they answer a vertex from a @ Proof. Let x, y © 10, 1}. We want to generate game generates a PR box. (G, H) that generates a PR, g box for some a > 0.
a,be {0,1}suchthata® b= xy.
graph H:
A =0 o g o — 1y =0
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fx =1 fy =1 5. Application to Communication Complexity
Winning Condition. Alice and Bob ”w (0.1} (0,17 [0.1)
win the game iff: fake 5 — ( et { ﬁ ”H1| TheH ke b — O @ Definition [14, 10] T e | g
® gy = gg = ha = hp; - - : xepu | I veoy
S e i = o (it R L (AHQI thecHs @ e b — 1 A nonlocal box P collapses CC if 3g > 1/2 A
9 { . 2n .
e gyt gs = ha o hg. such that Vn € N, Vf : {0,1}" — {0, 1},
(] and VX,Y € {0, 1}", we have: ,
P(a=f(X.Y)|X,Y.P) > q. | Alice  [— | Bob
@ Theorem €D Theorem . ,
If diam(G) > 2 and if X = K, U let G =,s H such tbat diam(G) > 2 and # is not @ Example | — |
K., where KC,, K, are complete connected. Assume “some symmetry” in a common ; <
graphs, then any perfect strategy equitable partition of (G,H). Then there exists a e The PR collapses CC [13]. Same for
for the (G, H)-isomorphism game perfect strategy for the (G, H)-isomorphism game that PR, 5 with & > 0 [4, 7. \ e — _J
allows Alice and Bob to generate a generates a PR, g box for some o > 0, where PR, g := e Quantum boxes cannot collapse
PR box. aPR + BPg + (1 — a — B)P1. CC [11]. Win <= a = (X, Y).

3. PR Box from the Graph Coloring Game

i All the protocols from the former theorems collapse communication complexity. Hence,
@ Graph Colorlng Game [8] although non-signaling, they do not satisfy the axioms of quantum mechanics.

Setting of the Game. Alice and Bob receive a
vertex from a graph G:
s L s Winning Condition. They win the Future Work
game if and only if:
and they answer a color of their choice: ® ga=9gs = ha= hg; @ Future Work
® ga ~ gg = ha # hp.
e _)/I ol Investigating connections between other games and the PR box.
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