

– Nonlocal Games –

How to Generate a PR Box from Graph Games?

Communication Complexity of Graph Isomorphism, Coloring, and Distance Games [6]

Pierre Botteron¹, Moritz Weber².

¹INRIA, ENS de Lyon (France); ²Saarland University, Saarbrücken (Germany).

1 Observation

The PR box is "powerful". For instance, it is the strongest non-signaling correlation for the CHSH game [12, 9].

2 Question

Can the PR box be generated via pre- and post-processings of perfect strategies for other games?

3 Case of study

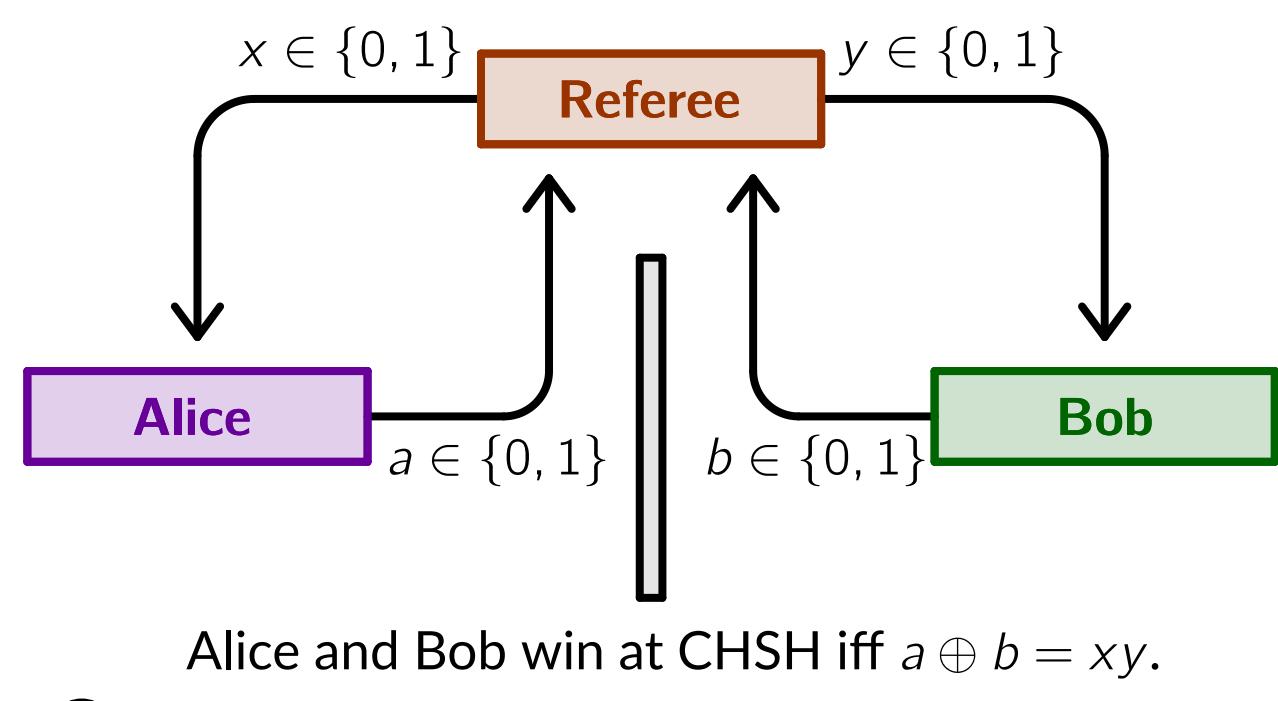
Here, we focus on some graph games.

1. Preliminary Definitions

4 Nonlocal Game

Some players Alice, Bob, Charlie, ... receive a question respectively $x, y, z, \dots \in \mathcal{X}$ from a referee. Without communication, each of them outputs an answer respectively $a, b, c, \dots \in \mathcal{A}$. We say that they collaboratively win the game if x, y, z, \dots and a, b, c, \dots satisfy a pre-defined relation, called *rule*.

5 Example: CHSH Game [9].



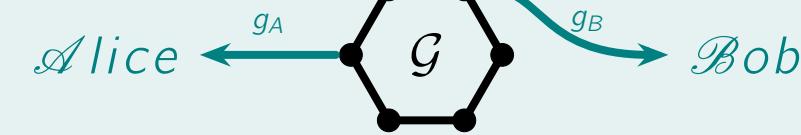
Alice and Bob win at CHSH iff $a \oplus b = xy$.

7 Other Examples of Boxes. P_{00} and P_{11} are the deterministic boxes that always give 0 (resp. 1) to Alice and Bob independently of the inputs.

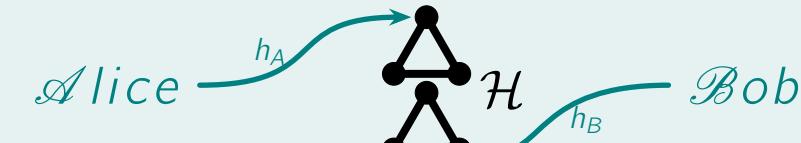
2. PR Box from the Graph Isomorphism Game

8 Graph Isom. Game [1]

Setting of the Game. Alice and Bob receive a vertex from a graph \mathcal{G} :



and they answer a vertex from a graph \mathcal{H} :



Winning Condition. Alice and Bob win the game iff:

- $g_A = g_B \Rightarrow h_A = h_B$;
- $g_A \sim g_B \Rightarrow h_A \sim h_B$;
- $g_A \not\sim g_B \Rightarrow h_A \not\sim h_B$.

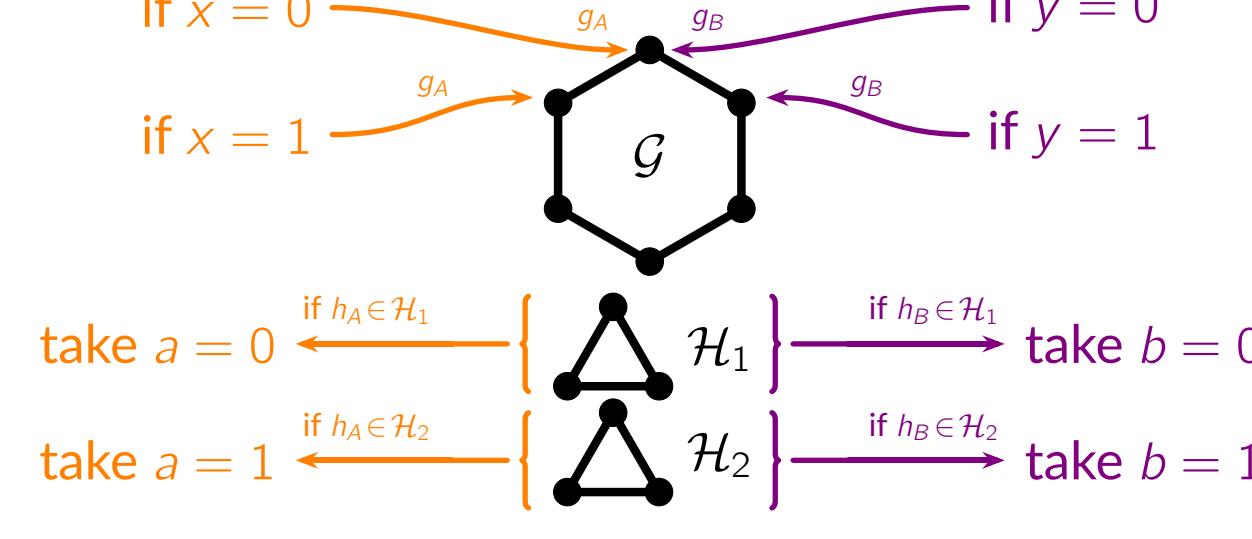
11 Theorem

If $\text{diam}(\mathcal{G}) \geq 2$ and if $\mathcal{H} = \mathcal{K}_n \sqcup \mathcal{K}_m$ where $\mathcal{K}_n, \mathcal{K}_m$ are complete graphs, then any perfect strategy for the $(\mathcal{G}, \mathcal{H})$ -isomorphism game allows Alice and Bob to generate a PR box.

9 Elementary Claim

If $\mathcal{G} = \mathcal{C}_6$ and $\mathcal{H} = \mathcal{C}_3 \sqcup \mathcal{C}_3$, then any perfect strategy for the $(\mathcal{G}, \mathcal{H})$ -isomorphism game allows Alice and Bob to generate a PR box.

10 Proof. Let $x, y \in \{0, 1\}$. We want to generate $a, b \in \{0, 1\}$ such that $a \oplus b = xy$.



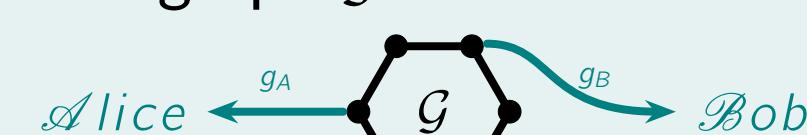
12 Theorem

Let $\mathcal{G} \cong_{ns} \mathcal{H}$ such that $\text{diam}(\mathcal{G}) \geq 2$ and \mathcal{H} is not connected. Assume "some symmetry" in a common equitable partition of $(\mathcal{G}, \mathcal{H})$. Then there exists a perfect strategy for the $(\mathcal{G}, \mathcal{H})$ -isomorphism game that generates a PR $_{\alpha, \beta}$ box for some $\alpha > 0$, where $\text{PR}_{\alpha, \beta} := \alpha P_{00} + \beta P_{11} + (1 - \alpha - \beta) P_{11}$.

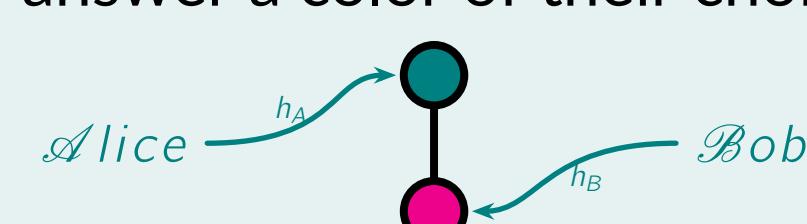
3. PR Box from the Graph Coloring Game

13 Graph Coloring Game [8]

Setting of the Game. Alice and Bob receive a vertex from a graph \mathcal{G} :



and they answer a color of their choice:



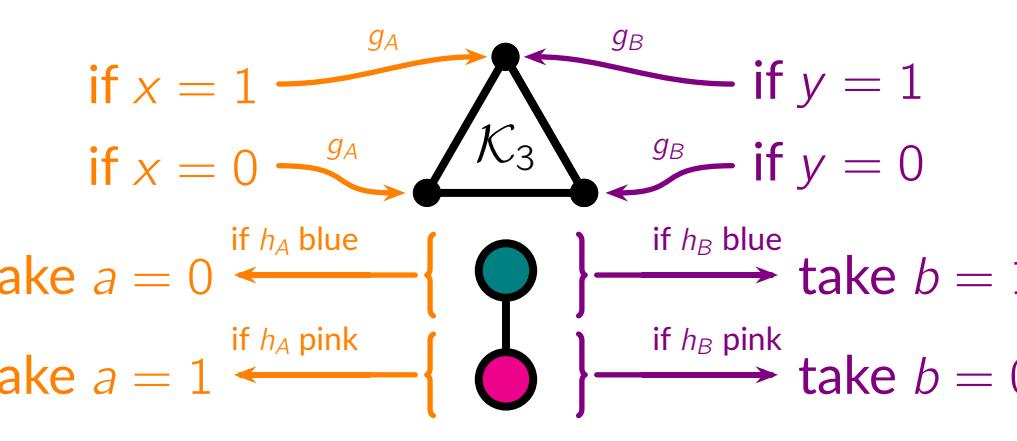
Winning Condition. They win the game if and only if:

- $g_A = g_B \Rightarrow h_A = h_B$;
- $g_A \sim g_B \Rightarrow h_A \neq h_B$.

14 Elementary Claim

A perfect strategy for the 2-coloring game of \mathcal{K}_3 enables to generate a PR box.

15 Proof. Let $x, y \in \{0, 1\}$. We want to generate $a, b \in \{0, 1\}$ such that $a \oplus b = xy$.



16 Theorem

Let \mathcal{G} and \mathcal{H} be such that $\text{diam}(\mathcal{G}) \geq 2$, and that \mathcal{H} admits exactly N connected components $\mathcal{K}_1, \dots, \mathcal{K}_N$, all being complete. Then, a perfect strategy for the graph isomorphism game $\mathcal{G} \cong_{ns} \mathcal{H}$, combined with a perfect strategy for the 2-coloring game of \mathcal{K}_N , enables to generate a PR box.

4. PR Box from the Vertex Distance Game

17 Vertex Distance Game

Setting of the Game. Alice and Bob receive a vertex from a graph \mathcal{G} :

and they answer a vertex from a graph \mathcal{H} :

Winning Condition. Let $D \in \mathbb{N}$. They win the game if and only if:

$$d(h_A, h_B) = \begin{cases} d(g_A, g_B) & \text{if } d(g_A, g_B) \leq D, \\ > D & \text{otherwise.} \end{cases}$$

18 Remark

The case $D = 1 \iff$ graph isomorphism game.

Denote $\mathcal{G} \cong^D \mathcal{H}$ if there exists a perfect strategy for the D -distance game of $(\mathcal{G}, \mathcal{H})$.

19 Theorem

Let $D \geq 2$. Then:

- $\mathcal{G} \cong^D \mathcal{H} \Leftrightarrow \mathcal{G} \cong \mathcal{H}$.
- $\mathcal{G} \cong^D \mathcal{H} \Leftrightarrow \mathcal{G} \cong_q \mathcal{H}$.
- $\mathcal{G} \cong_{ns}^D \mathcal{H} \not\Rightarrow \mathcal{G} \cong_{ns} \mathcal{H}$.

20 Theorem

If $\text{diam}(\mathcal{G}) > \text{diam}(\mathcal{H}) \geq D \geq 1$ and if \mathcal{H} admits exactly two connected components, then any perfect strategy for the D -distance game generates a PR box.

21 Theorem

Let $\mathcal{G} \cong_{ns}^D \mathcal{H}$ for some $1 \leq D < \text{diam}(\mathcal{G})$ and such that \mathcal{H} is not connected. Assume "some symmetry" in a common equitable partition of $(\mathcal{G}, \mathcal{H})$. Then there exists a perfect strategy for the D -distance game of $(\mathcal{G}, \mathcal{H})$ that generates a PR $_{\alpha, \beta}$ box for some $\alpha > 0$.

5. Application to Communication Complexity

22 Definition [14, 10]

A nonlocal box \mathbf{P} collapses CC if $\exists q > 1/2$ such that $\forall n \in \mathbb{N}, \forall f : \{0, 1\}^{2n} \rightarrow \{0, 1\}$, and $\forall X, Y \in \{0, 1\}^n$, we have:

$$\mathbb{P}(a = f(X, Y) | X, Y, \mathbf{P}) \geq q.$$

23 Example

- The PR collapses CC [13]. Same for PR $_{\alpha, \beta}$ with $\alpha > 0$ [4, 7].
- Quantum boxes cannot collapse CC [11].

24 Corollary

All the protocols from the former theorems collapse communication complexity. Hence, although non-signaling, they do not satisfy the axioms of quantum mechanics.

Future Work

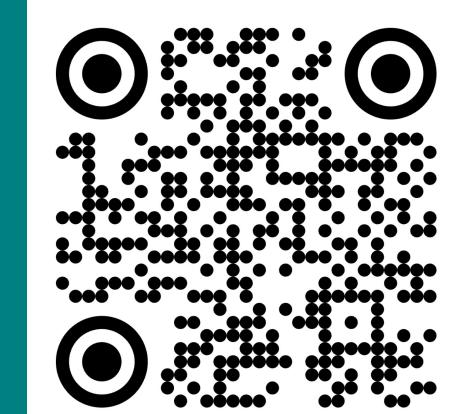
25 Future Work

Investigating connections between other games and the PR box.

© Pierre Botteron, GNU General Public License v3.0, built on Better Portrait Poster L^AT_EX template v1.0, from Daniel Bradford, Rafael Bailo, and Mike Morrison.

References

- [1] Aterias et al. "Quantum and non-signaling graph isomorphisms". In: *Journal of Combinatorial Theory, Series B* 136 (2019). DOI: 10.1016/j.jctb.2018.11.002.
- [2] Botteron. "Nonlocal Boxes and Communication Complexity". Under the joint supervision of Anne Broadbent, Ion Nechita and Clément Pellegrini. M.Sc. thesis. Université de Toulouse, 2022.
- [3] Botteron. "Nonlocal Games Through Communication Complexity and Quantum Cryptography". PhD thesis. Univ. de Toulouse, 2025. arXiv: 2510.09457 [quant-ph].
- [4] Botteron, Broadbent, Chaihi, Nechita, and Pellegrini. "Algebra of Nonlocal Boxes and the Collapse of Communication Complexity". In: *Quantum* 8 (2024). DOI: 10.22331/q-2024-07-10-1402.
- [5] Botteron, Broadbent, and Proulx. "Extending the Known Region of Nonlocal Boxes that Collapse Communication Complexity". In: *Physical Review Letter* 132 (2024). DOI: 10.1103/PhysRevLett.132.070201.
- [6] Botteron and Weber. *Communication Complexity of Graph Isomorphism, Coloring, and Distance Games*. 2024. arXiv: 2406.02199 [quant-ph].
- [7] Brito, Moreno, Rai, and Chaves. "Nonlocality distillation and quantum voids". In: *Physical Review Answer* 100.1 (2019). DOI: 10.1103/physreva.100.012102.
- [8] Cameron, Montanaro, Newman, Severini, and Winter. "On the quantum chromatic number of a graph". In: *Electronic Journal of Combinatorics* 14.1 (2007).
- [9] Clauser, Horne, Shimony, and Holt. "Proposed Experiment to Test Local Hidden-Variable Theories". In: *PLR* 23.15 (1969). DOI: 10.1103/physrevlett.23.2880.
- [10] Cleve and Buhrman. "Substituting quantum entanglement for communication". In: *Physical Review Answer* 56.2 (1997). DOI: 10.1103/physrev.56.1201.
- [11] Cleve, van Dam, Nielsen, and Tapp. "Quantum Entanglement and the Communication Complexity of the Inner Product Function". In: *Quantum Computing and Quantum Communications*. Springer Berlin Heidelberg, 1999. DOI: 10.1007/3-540-49208-9-4.
- [12] Popescu and Rohrlich. "Quantum nonlocality as an axiom". In: *Foundations of Physics* 24.3 (1994). DOI: 10.1007/bf02058098.
- [13] van Dam. "Nonlocality and Communication Complexity". Ph.D. thesis. Department of Physics: University of Oxford, 1999.
- [14] Yao. "Some complexity questions related to distributed computing(Preliminary Report)". In: *STOC '79*. Atlanta, Georgia, USA: Association for Computing Machinery, 1979. DOI: 10.1145/800135.804414.



Scan the QR code to get the full paper